Adversarial Machine Learning

CS229

Tengyu Ma

Security Problems in Machine Learning

- Adversarial training data
 - ML training data are often crowd-sourced or crawled from the web
 - > Can malicious training data destroy the model, or create backdoors?
- > Adversarial test data
 - > Adversarial test example can fool the classifier
- Data privacy
 - If a model learned partially from data on your cell phone is made public, can others extract your personal information from the model?
- Note: issues are not necessarily specific to modern ML; they existed before as well, but attracted less attention because ML didn't work as well as it does today.

Adversarial Examples at Test Time



 $+.007 \times$

_

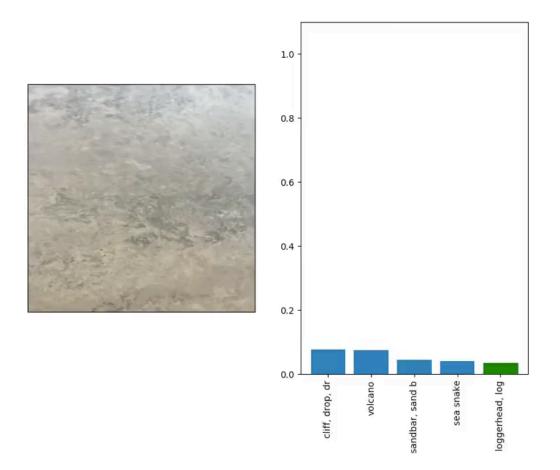
"panda" 57.7% confidence

"gibbon" 99.3 % confidence

Image credit: Above: Explaining And Harnessing Adversarial Examples. Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy, 2015 Right: Wikipedia

3D Adversarial Examples

> A turtle that is almost always classified as a rifle



[Synthesizing Robust Adversarial Examples Anish Athalye, Logan Engstrom, Andrew Ilyas, Kevin Kwok, 2018] Video link: https://www.youtube.com /watch?v=YXy6oX1iNoA&f eature=youtu.be

Formulation

Supervised learning with binary classification X = ℝ^d, Y = {−1,1} f: X → ℝ

- \succ Training distributions \mathcal{D} , clean test distribution \mathcal{D}
- > Clean test accuracy: $\Pr_{(x,y)\sim D}[1(yf(x) > 0)]$
- > Attack/threat model: can perturb x to get adversarial example \hat{x}
 - \succ Commonly-studied attack model: $\hat{x} = x + \Delta$ where $||\Delta||_{\infty} \leq \delta$
 - > For small δ (say $\delta = 0.1$ when coordinates of x has average scale 1), such perturbation often does not affect human classification
- > Attacker's goal: find \hat{x} such that $yf(\hat{x}) < 0$
- ► Defender's goal: maximize the robust test accuracy $\Pr_{(x,y)\sim D} [\forall \hat{x} = x + \Delta \text{ with } ||\Delta||_{\infty} \le \delta, \text{ s. t. , } 1(yf(\hat{x}) > 0)]$

Attack Algorithms

Fast gradient sign method (FGSM)

> Let $\ell((x, y); \theta)$ be the loss function for training example (x, y)

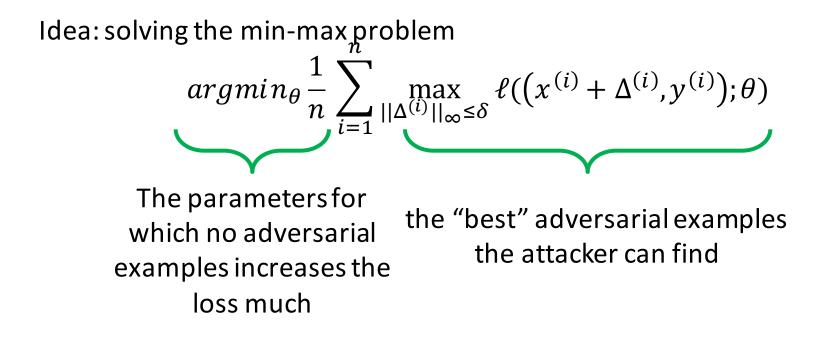
- > Recall that small loss $\Rightarrow f(x)$ is correct
- > Attack: $\hat{x} = x + \delta \cdot \operatorname{sign}(\nabla_x \ell((x, y); \theta))$

Projected gradient descent (PGD)

Solve the optimization problem below by projected gradient ascent

 $\max \ell((\hat{x}, y); \theta)$
s.t. $||\hat{x} - x||_{\infty} \le \delta$

Defense: Adversarial Training



Computational challenge:

- > the max cannot be evaluated exactly
- > heuristic: iteratively update $\Delta^{(i)'}s$ and θ

Am empirically strong defense; but hard to scale to large datasets due to computational overheads