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The Midterms are tough - DON'T PANIC!
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Fall 16 Midterm Grade distribution

Fall 17: © =39.5,0 =145
Spring 19: 1 =65.4,0 =224



Helpful Resources

@ Study guide by past CS229 TA Shervine Amidi (link is on course

syllabus)

CS 229 — Machine Learning

Star

My twin brother Afshine and | created this set o ilustrated Machine Learning cheatsheets covering the content of the CS 229 class, which | TA-ed in Fall 2018 at Stanford. They can

(hopetully) be useful to all future students of this course as well as to anyone else interested in Machine Learning.

Cheatsheet
Supervised Learning | Unsupervised Learning | Deep Learning |
0, e o
s .l
° o

+ Loss function, gradient descent, ikelihood
« Linear models, Support Vector Machines,
generative learning

+ Tree and ensemble methods, k-NN, learning
theory

 Expectation-Maximization, k-means, hierarchical
clustering

* Clustering assessment metrics

- Principal component analysis, independent
component analysis

- Architecture, activation function,
backpropagation, dropout

~ Convolutional layer, batch normaization, types of
gates

- Markov decision processes, Bellman equation,
Qleaming

https://stanford.edu/~shervine/teaching/cs-229/



Helpful Resources

IMPORTANT: CS229 Linear Algebra and Probability Review handouts
@ Go over them carefully and in detail.

@ Any and all of the concepts/tools within are fair game w.r.t. solving
midterm problems

TAKE NOTES
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° {x("),)/(")},’-’:l denotes a dataset of n examples. For each example i,
x() e R, and y() € R.
(1)

© The j-th element (i.e. feature) of the i-th sample is denoted x; .

e X € R"™ is the data matrix and y € R" is the label vector such that:

X o7 e T x(1)
X(i) = ) X = — — | .}7 = . i X0 = .
xc(,i) — x(mT  _ y(m 9T x(n)

for parameter vector § € RY.
@ The t-th iteration of 6 is denoted (%),
@ Superscripts: sample index i € [1, n]; iteration index t € [1, T]

@ Subscripts: feature index j € [1, d]
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e F is your model class
e f* is optimal model for problem (or the true generating distribution)
@ g is the optimal model in your model class
o f is the model you obtain through learning on your dataset.
@ approximation error — bias
e reduce bias by expanding F (e.g. more features, more layers) or
moving F closer to optimal model f* (i.e. choosing a better class)
@ estimation error — variance



Another perspective on bias-variance
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e F is your model class
e f* is optimal model for problem (or the true generating distribution)
@ g is the optimal model in your model class
o f is the model you obtain through learning on your dataset.
@ approximation error — bias
e reduce bias by expanding F (e.g. more features, more layers) or
moving F closer to optimal model f* (i.e. choosing a better class)
@ estimation error — variance

o reduce variance by contracting F (e.g. remove features, regularize) or
making f closer to g (e.g. better training algo, more data)



Common Problem-solving Strategies



Common Problem-solving Strategies

Take stock of your arsenal



Common Problem-solving Strategies

Take stock of your arsenal
© Probability
Bayes' Rule
Independence, Conditional Independence
Chain Rule
etc.



Common Problem-solving Strategies

Take stock of your arsenal
© Probability
o Bayes' Rule
e Independence, Conditional Independence
e Chain Rule
e etc.

@ Calculus (e.g. taking gradients)
e Maximum likelihood estimations:

() =log£(.) =log [[ p() = logp(.)

e Loss minimization
e etc.



Common Problem-solving Strategies

Take stock of your arsenal
© Probability
o Bayes' Rule
e Independence, Conditional Independence
e Chain Rule
e etc.

@ Calculus (e.g. taking gradients)
e Maximum likelihood estimations:

() =log£(.) =log [[ p() = logp(.)

e Loss minimization
e etc.

© Linear Algebra

e PSD, eigendecomposition, projection, Mercer's Theorem etc.



Common Problem-solving Strategies

Take stock of your arsenal

© Probability

o Bayes' Rule

e Independence, Conditional Independence

e Chain Rule

e etc.
@ Calculus (e.g. taking gradients)

o Maximum likelihood estimations:

() =log£(.) =log [[ p() = logp(.)

e Loss minimization
e etc.

© Linear Algebra
e PSD, eigendecomposition, projection, Mercer's Theorem etc.
@ Proof techniques

e construction, contradiction (e.g. counterexample), induction,
contrapositive, etc.



Spring 19 Problem 3(a,b) - Exponential Discr. Analysis

Recall that the Exponential distribution parameterized by A > 0 has density

p(x; \) = Nexp (—Ax), x € Ry.

Now suppose that our model is described as follows:

y ~ Bernoulli(¢)
z|y = 0 ~ Exponential(Ag)
zly = 1 ~ Exponential(A;) (2)

where ¢ is the parameter of the class marginal distribution, and Ao and A\, are the
class specific parameters for the distribution over input z given y € {0, 1}.

(a) [5 points] Derive an exact formula for p(y = 1|z) from the terms defined above,
and also show that the resulting classifier has a linear decision boundary in .
Specifically, show that

1
ply =1lz) = 1+ exp{—(6y + 612)}

for some y and ;. Clearly state what 6, and 6, are.

(b) [10 points] Derive the Maximum Likelihood Estimates of ¢, Ay and A, for the given
training data using the joint probability (i.e £(¢, Ao, M) = log [Ti—, p(z®, y®; ¢, Ao, A1))-
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zly = 1 ~ Exponential(A;) (2)

where ¢ is the parameter of the class marginal distribution, and Ao and A\, are the
class specific parameters for the distribution over input z given y € {0, 1}.

(a) [5 points] Derive an exact formula for p(y = 1|z) from the terms defined above,
and also show that the resulting classifier has a linear decision boundary in .
Specifically, show that

1
ply =1lz) = 1+ exp{—(6y + 612)}

for some y and ;. Clearly state what 6, and 6, are.

(b) [10 points] Derive the Maximum Likelihood Estimates of ¢, Ay and A, for the given
training data using the joint probability (i.e £(¢, Ao, M) = log [Ti—, p(z®, y®; ¢, Ao, A1))-

Tools used: Probability (Bayes’, Indep, Chain Rule), Calculus (MLE)



Spring 19 Problem

5. [10 points] Kernel Fun
In the following sub-questions, we will explore various properties of Kernels. Through-
out the question, we assume z,z € R?, ¢ : R — RP, K : RY x R — R.
(a) [5 points]
Suppose we have a Positive Semidefinite Matrix G € R%*¢, and define a function
K as follows:

K(z,2):=2"Gz.

Show that K is a valid kernel.

Remark: Note that G is not to be confused to be the kernel matrix.

Hint: You could consider using eigendecomposition of G, though it is possible
to show the result without constructing an explicit feature map.

Tools used: Linear Algebra (PSD properties, eigendecomposition), proof
by construction



© The midterm is tough. Don't panic!
@ Use resources - study guide, lecture and review handouts, Piazza, OH

© Know your problem-solving tools - take stock of your arsenall!



Best of Luck!
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