CS229 Midterm Review Part II

Taide Ding

November 1, 2019

Overview

(1) Past Midterm Stats
(2) Helpful Resources
(3) Notation: quick clarifying review

4 Another perspective on bias-variance
(5) Common Problem-solving Strategies (with examples)

The Midterms are tough - DON'T PANIC!

Fall 16 Midterm Grade distribution
Fall 17: $\mu=39.5, \sigma=14.5$
Spring 19: $\mu=65.4, \sigma=22.4$

Helpful Resources

- Study guide by past CS229 TA Shervine Amidi (link is on course syllabus)

CS 229 - Machine Learning
Star

My twin brother Afshine and I created this set of illustrated Machine Learning cheatsheets covering the content of the CS 229 class, which I TA-ed in Fall 2018 at Stanford. They can (hopefully!) be useful to all future students of this course as well as to anyone else interested in Machine Learning.

Cheatsheet

- Expectation-Maximization, k-means, hierarchical clustering
- Clustering assessment metrics
- Principal component analysis, independent
component analysis

https://stanford.edu/~shervine/teaching/cs-229/

Helpful Resources

IMPORTANT: CS229 Linear Algebra and Probability Review handouts

- Go over them carefully and in detail.
- Any and all of the concepts/tools within are fair game w.r.t. solving midterm problems

TAKE NOTES

Notation: quick clarifying review

Notation: quick clarifying review

- $\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{n}$ denotes a dataset of n examples. For each example i, $x^{(i)} \in \mathbb{R}^{d}$, and $y^{(i)} \in \mathbb{R}$.

Notation: quick clarifying review

- $\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{n}$ denotes a dataset of n examples. For each example i, $x^{(i)} \in \mathbb{R}^{d}$, and $y^{(i)} \in \mathbb{R}$.
- The j-th element (i.e. feature) of the i-th sample is denoted $x_{j}^{(i)}$.

Notation: quick clarifying review

- $\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{n}$ denotes a dataset of n examples. For each example i, $x^{(i)} \in \mathbb{R}^{d}$, and $y^{(i)} \in \mathbb{R}$.
- The j-th element (i.e. feature) of the i-th sample is denoted $x_{j}^{(i)}$.
- $X \in \mathbb{R}^{n \times d}$ is the data matrix and $\vec{y} \in \mathbb{R}^{n}$ is the label vector such that:

$$
x^{(i)}=\left[\begin{array}{c}
x_{1}^{(i)} \\
\vdots \\
x_{d}^{(i)}
\end{array}\right], X=\left[\begin{array}{ccc}
- & x^{(1) T} & - \\
- & \vdots & - \\
- & x^{(n) T} & -
\end{array}\right], \vec{y}=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(n)}
\end{array}\right], X \theta=\left[\begin{array}{c}
\theta^{T} x^{(1)} \\
\vdots \\
\theta^{T} x^{(n)}
\end{array}\right]
$$

for parameter vector $\theta \in \mathbb{R}^{d}$.

Notation: quick clarifying review

- $\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{n}$ denotes a dataset of n examples. For each example i, $x^{(i)} \in \mathbb{R}^{d}$, and $y^{(i)} \in \mathbb{R}$.
- The j-th element (i.e. feature) of the i-th sample is denoted $x_{j}^{(i)}$.
- $X \in \mathbb{R}^{n \times d}$ is the data matrix and $\vec{y} \in \mathbb{R}^{n}$ is the label vector such that:

$$
x^{(i)}=\left[\begin{array}{c}
x_{1}^{(i)} \\
\vdots \\
x_{d}^{(i)}
\end{array}\right], X=\left[\begin{array}{ccc}
- & x^{(1) T} & - \\
- & \vdots & - \\
- & x^{(n) T} & -
\end{array}\right], \vec{y}=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(n)}
\end{array}\right], X \theta=\left[\begin{array}{c}
\theta^{T} x^{(1)} \\
\vdots \\
\theta^{T} x^{(n)}
\end{array}\right]
$$

for parameter vector $\theta \in \mathbb{R}^{d}$.

- The t-th iteration of θ is denoted $\theta^{(t)}$.

Notation: quick clarifying review

- $\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{n}$ denotes a dataset of n examples. For each example i, $x^{(i)} \in \mathbb{R}^{d}$, and $y^{(i)} \in \mathbb{R}$.
- The j-th element (i.e. feature) of the i-th sample is denoted $x_{j}^{(i)}$.
- $X \in \mathbb{R}^{n \times d}$ is the data matrix and $\vec{y} \in \mathbb{R}^{n}$ is the label vector such that:

$$
x^{(i)}=\left[\begin{array}{c}
x_{1}^{(i)} \\
\vdots \\
x_{d}^{(i)}
\end{array}\right], X=\left[\begin{array}{ccc}
- & x^{(1) T} & - \\
- & \vdots & - \\
- & x^{(n)} T & -
\end{array}\right], \vec{y}=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(n)}
\end{array}\right], X \theta=\left[\begin{array}{c}
\theta^{T} x^{(1)} \\
\vdots \\
\theta^{T} x^{(n)}
\end{array}\right]
$$

for parameter vector $\theta \in \mathbb{R}^{d}$.

- The t-th iteration of θ is denoted $\theta^{(t)}$.
- Superscripts: sample index $i \in[1, n]$; iteration index $t \in[1, T]$

Notation: quick clarifying review

- $\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{n}$ denotes a dataset of n examples. For each example i, $x^{(i)} \in \mathbb{R}^{d}$, and $y^{(i)} \in \mathbb{R}$.
- The j-th element (i.e. feature) of the i-th sample is denoted $x_{j}^{(i)}$.
- $X \in \mathbb{R}^{n \times d}$ is the data matrix and $\vec{y} \in \mathbb{R}^{n}$ is the label vector such that:

$$
x^{(i)}=\left[\begin{array}{c}
x_{1}^{(i)} \\
\vdots \\
x_{d}^{(i)}
\end{array}\right], X=\left[\begin{array}{ccc}
- & x^{(1) T} & - \\
- & \vdots & - \\
- & x^{(n) T} & -
\end{array}\right], \vec{y}=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(n)}
\end{array}\right], X \theta=\left[\begin{array}{c}
\theta^{T} x^{(1)} \\
\vdots \\
\theta^{T} x^{(n)}
\end{array}\right]
$$

for parameter vector $\theta \in \mathbb{R}^{d}$.

- The t-th iteration of θ is denoted $\theta^{(t)}$.
- Superscripts: sample index $i \in[1, n]$; iteration index $t \in[1, T]$
- Subscripts: feature index $j \in[1, d]$

Another perspective on bias-variance

Another perspective on bias-variance

Another perspective on bias-variance

- \mathcal{F} is your model class

Another perspective on bias-variance

- \mathcal{F} is your model class
- f^{*} is optimal model for problem (or the true generating distribution)

Another perspective on bias-variance

- \mathcal{F} is your model class
- f^{*} is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class

Another perspective on bias-variance

- \mathcal{F} is your model class
- f^{*} is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.

Another perspective on bias-variance

- \mathcal{F} is your model class
- f^{*} is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
- approximation error \rightarrow bias

Another perspective on bias-variance

- \mathcal{F} is your model class
- f^{*} is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
- approximation error \rightarrow bias
- reduce bias by expanding \mathcal{F} (e.g. more features, more layers) or moving \mathcal{F} closer to optimal model f^{*} (i.e. choosing a better class)

Another perspective on bias-variance

- \mathcal{F} is your model class
- f^{*} is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
- approximation error \rightarrow bias
- reduce bias by expanding \mathcal{F} (e.g. more features, more layers) or moving \mathcal{F} closer to optimal model f^{*} (i.e. choosing a better class)
- estimation error \rightarrow variance

Another perspective on bias-variance

- \mathcal{F} is your model class
- f^{*} is optimal model for problem (or the true generating distribution)
- g is the optimal model in your model class
- \hat{f} is the model you obtain through learning on your dataset.
- approximation error \rightarrow bias
- reduce bias by expanding \mathcal{F} (e.g. more features, more layers) or moving \mathcal{F} closer to optimal model f^{*} (i.e. choosing a better class)
- estimation error \rightarrow variance
- reduce variance by contracting \mathcal{F} (e.g. remove features, regularize) or making \vec{f} closer to g (e.g. better training algo, more data)

Common Problem-solving Strategies

Common Problem-solving Strategies

Take stock of your arsenal

Common Problem-solving Strategies

Take stock of your arsenal

(1) Probability

- Bayes' Rule
- Independence, Conditional Independence
- Chain Rule
- etc.

Common Problem-solving Strategies

Take stock of your arsenal

(1) Probability

- Bayes' Rule
- Independence, Conditional Independence
- Chain Rule
- etc.
(2) Calculus (e.g. taking gradients)
- Maximum likelihood estimations:

$$
\ell(.)=\log \mathcal{L}(.)=\log \prod p(.)=\sum \log p(.)
$$

- Loss minimization
- etc.

Common Problem-solving Strategies

Take stock of your arsenal

(1) Probability

- Bayes' Rule
- Independence, Conditional Independence
- Chain Rule
- etc.
(2) Calculus (e.g. taking gradients)
- Maximum likelihood estimations:

$$
\ell(.)=\log \mathcal{L}(.)=\log \prod p(.)=\sum \log p(.)
$$

- Loss minimization
- etc.
(3) Linear Algebra
- PSD, eigendecomposition, projection, Mercer's Theorem etc.

Common Problem-solving Strategies

Take stock of your arsenal

(1) Probability

- Bayes' Rule
- Independence, Conditional Independence
- Chain Rule
- etc.
(2) Calculus (e.g. taking gradients)
- Maximum likelihood estimations:

$$
\ell(.)=\log \mathcal{L}(.)=\log \prod p(.)=\sum \log p(.)
$$

- Loss minimization
- etc.
(3) Linear Algebra
- PSD, eigendecomposition, projection, Mercer's Theorem etc.
(0) Proof techniques
- construction, contradiction (e.g. counterexample), induction, contrapositive, etc.

Spring 19 Problem 3(a,b) - Exponential Discr. Analysis

Recall that the Exponential distribution parameterized by $\lambda>0$ has density

$$
p(x ; \lambda)=\lambda \exp (-\lambda x), \quad x \in \mathbb{R}_{+}
$$

Now suppose that our model is described as follows:

$$
\begin{align*}
y & \sim \operatorname{Bernoulli}(\phi) \\
x \mid y=0 & \sim \operatorname{Exponential}\left(\lambda_{0}\right) \\
x \mid y=1 & \sim \operatorname{Exponential}\left(\lambda_{1}\right) \tag{2}
\end{align*}
$$

where ϕ is the parameter of the class marginal distribution, and λ_{0} and λ_{1} are the class specific parameters for the distribution over input x given $y \in\{0,1\}$.
(a) [5 points] Derive an exact formula for $p(y=1 \mid x)$ from the terms defined above, and also show that the resulting classifier has a linear decision boundary in x. Specifically, show that

$$
p(y=1 \mid x)=\frac{1}{1+\exp \left\{-\left(\theta_{0}+\theta_{1} x\right)\right\}}
$$

for some θ_{0} and θ_{1}. Clearly state what θ_{0} and θ_{1} are.
(b) [10 points] Derive the Maximum Likelihood Estimates of ϕ, λ_{0} and λ_{1} for the given training data using the joint probability (i.e $\left.\ell\left(\phi, \lambda_{0}, \lambda_{1}\right)=\log \prod_{i=1}^{n} p\left(x^{(i)}, y^{(i)} ; \phi, \lambda_{0}, \lambda_{1}\right)\right)$.

Spring 19 Problem 3(a,b) - Exponential Discr. Analysis

Recall that the Exponential distribution parameterized by $\lambda>0$ has density

$$
p(x ; \lambda)=\lambda \exp (-\lambda x), \quad x \in \mathbb{R}_{+}
$$

Now suppose that our model is described as follows:

$$
\begin{align*}
y & \sim \operatorname{Bernoulli}(\phi) \\
x \mid y=0 & \sim \operatorname{Exponential}\left(\lambda_{0}\right) \\
x \mid y=1 & \sim \operatorname{Exponential}\left(\lambda_{1}\right) \tag{2}
\end{align*}
$$

where ϕ is the parameter of the class marginal distribution, and λ_{0} and λ_{1} are the class specific parameters for the distribution over input x given $y \in\{0,1\}$.
(a) [5 points] Derive an exact formula for $p(y=1 \mid x)$ from the terms defined above, and also show that the resulting classifier has a linear decision boundary in x. Specifically, show that

$$
p(y=1 \mid x)=\frac{1}{1+\exp \left\{-\left(\theta_{0}+\theta_{1} x\right)\right\}}
$$

for some θ_{0} and θ_{1}. Clearly state what θ_{0} and θ_{1} are.
(b) [10 points] Derive the Maximum Likelihood Estimates of ϕ, λ_{0} and λ_{1} for the given training data using the joint probability (i.e $\ell\left(\phi, \lambda_{0}, \lambda_{1}\right)=\log \prod_{i=1}^{n} p\left(x^{(i)}, y^{(i)} ; \phi, \lambda_{0}, \lambda_{1}\right)$).

Spring 19 Problem 5(a) - Kernel Fun

5. [10 points] Kernel Fun

In the following sub-questions, we will explore various properties of Kernels. Throughout the question, we assume $x, z \in \mathbb{R}^{d}, \phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}, K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$.
(a) $[5$ points]

Suppose we have a Positive Semidefinite Matrix $G \in \mathbb{R}^{d \times d}$, and define a function K as follows:

$$
K(x, z):=x^{T} G z .
$$

Show that K is a valid kernel.
Remark: Note that G is not to be confused to be the kernel matrix.
Hint: You could consider using eigendecomposition of G, though it is possible to show the result without constructing an explicit feature map.

Tools used: Linear Algebra (PSD properties, eigendecomposition), proof by construction

Summary

(1) The midterm is tough. Don't panic!
(2) Use resources - study guide, lecture and review handouts, Piazza, OH
(3) Know your problem-solving tools - take stock of your arsenal!

Best of Luck!

