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The Midterms are tough - DON’T PANIC!

Fall 16 Midterm Grade distribution

Fall 17: µ = 39.5, σ = 14.5
Spring 19: µ = 65.4, σ = 22.4

3 / 33



Helpful Resources

Study guide by past CS229 TA Shervine Amidi (link is on course
syllabus)

https://stanford.edu/∼shervine/teaching/cs-229/
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Helpful Resources

IMPORTANT: CS229 Linear Algebra and Probability Review handouts

Go over them carefully and in detail.

Any and all of the concepts/tools within are fair game w.r.t. solving
midterm problems

TAKE NOTES
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Notation: quick clarifying review

{x (i), y (i)}ni=1 denotes a dataset of n examples. For each example i ,
x (i) ∈ Rd , and y (i) ∈ R.
The j-th element (i.e. feature) of the i-th sample is denoted x

(i)
j .

X ∈ Rn×d is the data matrix and ~y ∈ Rn is the label vector such that:

x (i) =

x
(i)
1
...

x
(i)
d

 ,X =

− x (1)T −

−
... −

− x (n)T −

 , ~y =

y
(1)

...

y (n)

 ,Xθ =
θ

T x (1)

...

θT x (n)


for parameter vector θ ∈ Rd .

The t-th iteration of θ is denoted θ(t).

Superscripts: sample index i ∈ [1, n]; iteration index t ∈ [1,T ]

Subscripts: feature index j ∈ [1, d ]
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Another perspective on bias-variance

F is your model class
f ∗ is optimal model for problem (or the true generating distribution)
g is the optimal model in your model class
f̂ is the model you obtain through learning on your dataset.
approximation error → bias

reduce bias by expanding F (e.g. more features, more layers) or
moving F closer to optimal model f ∗ (i.e. choosing a better class)

estimation error → variance
reduce variance by contracting F (e.g. remove features, regularize) or

making ~f closer to g (e.g. better training algo, more data)
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Common Problem-solving Strategies

Take stock of your arsenal
1 Probability

Bayes’ Rule
Independence, Conditional Independence
Chain Rule
etc.

2 Calculus (e.g. taking gradients)
Maximum likelihood estimations:

`(.) = logL(.) = log
∏

p(.) =
∑

log p(.)

Loss minimization
etc.

3 Linear Algebra
PSD, eigendecomposition, projection, Mercer’s Theorem etc.

4 Proof techniques
construction, contradiction (e.g. counterexample), induction,
contrapositive, etc.

23 / 33



Common Problem-solving Strategies

Take stock of your arsenal

1 Probability
Bayes’ Rule
Independence, Conditional Independence
Chain Rule
etc.

2 Calculus (e.g. taking gradients)
Maximum likelihood estimations:

`(.) = logL(.) = log
∏

p(.) =
∑

log p(.)

Loss minimization
etc.

3 Linear Algebra
PSD, eigendecomposition, projection, Mercer’s Theorem etc.

4 Proof techniques
construction, contradiction (e.g. counterexample), induction,
contrapositive, etc.

24 / 33



Common Problem-solving Strategies

Take stock of your arsenal
1 Probability

Bayes’ Rule
Independence, Conditional Independence
Chain Rule
etc.

2 Calculus (e.g. taking gradients)
Maximum likelihood estimations:

`(.) = logL(.) = log
∏

p(.) =
∑

log p(.)

Loss minimization
etc.

3 Linear Algebra
PSD, eigendecomposition, projection, Mercer’s Theorem etc.

4 Proof techniques
construction, contradiction (e.g. counterexample), induction,
contrapositive, etc.

25 / 33



Common Problem-solving Strategies

Take stock of your arsenal
1 Probability

Bayes’ Rule
Independence, Conditional Independence
Chain Rule
etc.

2 Calculus (e.g. taking gradients)
Maximum likelihood estimations:

`(.) = logL(.) = log
∏

p(.) =
∑

log p(.)

Loss minimization
etc.

3 Linear Algebra
PSD, eigendecomposition, projection, Mercer’s Theorem etc.

4 Proof techniques
construction, contradiction (e.g. counterexample), induction,
contrapositive, etc.

26 / 33



Common Problem-solving Strategies

Take stock of your arsenal
1 Probability

Bayes’ Rule
Independence, Conditional Independence
Chain Rule
etc.

2 Calculus (e.g. taking gradients)
Maximum likelihood estimations:

`(.) = logL(.) = log
∏

p(.) =
∑

log p(.)

Loss minimization
etc.

3 Linear Algebra
PSD, eigendecomposition, projection, Mercer’s Theorem etc.

4 Proof techniques
construction, contradiction (e.g. counterexample), induction,
contrapositive, etc.

27 / 33



Common Problem-solving Strategies

Take stock of your arsenal
1 Probability

Bayes’ Rule
Independence, Conditional Independence
Chain Rule
etc.

2 Calculus (e.g. taking gradients)
Maximum likelihood estimations:

`(.) = logL(.) = log
∏

p(.) =
∑

log p(.)

Loss minimization
etc.

3 Linear Algebra
PSD, eigendecomposition, projection, Mercer’s Theorem etc.

4 Proof techniques
construction, contradiction (e.g. counterexample), induction,
contrapositive, etc.

28 / 33



Spring 19 Problem 3(a,b) - Exponential Discr. Analysis

Tools used: Probability (Bayes’, Indep, Chain Rule), Calculus (MLE)
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Spring 19 Problem 5(a) - Kernel Fun

Tools used: Linear Algebra (PSD properties, eigendecomposition), proof
by construction
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Summary

1 The midterm is tough. Don’t panic!

2 Use resources - study guide, lecture and review handouts, Piazza, OH

3 Know your problem-solving tools - take stock of your arsenal!
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Best of Luck!
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