
Zero-shot Learning / Prompting
• Give some inputs ("#,… , "&) (which can be questions + instructions)
to the LLMs
• LLMs generate a sequence of tokens "&(#, "&(),… , "* given
("#,… , "&)

Prompt Engineering

In-context learning
• Give LLMs ("#, %#, "&, %&, … , "(, %(, ")*+)) where ("-, %-) are
exemplars, and ")*+) is a test example.

"#%#
"&

")*+)
%)*+)

In-context learning
• Give LLMs ("#, %#, "&, %&, … , "(, %(, ")*+)) where ("-, %-) are
exemplars, and ")*+) is a test example.

Few-shot Chain of Thoughts
• Instead of ("#, %#, "&, %&, … , "(, %(, ")*+)), use
("#, -#, %#, "&, -&, %&, … , "(, -(, %(, ")*+))
• where -. are some thought process for answering the question

Wei et al.’22 Chain-of-Thought
Prompting Elicits Reasoning in

Large Language Models

"#

%#

")*+)

"#
-#

%#
")*+)

Zero-shot CoT (Let’s think step by step)

Kojima et al’22, Large Language Models are Zero-Shot Reasoners

Instruct Tuning and RLH
• Methods to improve LLMs’ capability of following instructions / aligning LLMs with user

intents

• Step 1: collect datasets consists of !, # =(instructions/questions, answers) pairs, where
answers are given by human labelers.
• Fine-tune the model on the dataset

• Step 2: train a reward model to predict human’s preferences of the answer (using human
labels again)
• % !, # ∈ ℝ : human’s preferences on the answer # given question !

• Step 3: Use policy gradient to maximize ()∼+, ⋅ .)[%(!, #)]
• ∇()∼+, ⋅ .) % !, # = ()∼+,(⋅|.)[% !, # ⋅ ∇ log 8 # !]

