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A vector-valued random variable X =
[

X1 · · · Xd

]T
is said to have a multivariate

normal (or Gaussian) distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Sd
++

1

if its probability density function2 is given by

p(x;µ,Σ) =
1

(2π)d/2|Σ|1/2 exp
(

−1

2
(x− µ)TΣ−1(x− µ)

)

.

We write this as X ∼ N (µ,Σ). In these notes, we describe multivariate Gaussians and some
of their basic properties.

1 Relationship to univariate Gaussians

Recall that the density function of a univariate normal (or Gaussian) distribution is
given by

p(x;µ, σ2) =
1√
2πσ

exp

(

− 1

2σ2
(x− µ)2

)

.

Here, the argument of the exponential function, − 1
2σ2 (x−µ)2, is a quadratic function of the

variable x. Furthermore, the parabola points downwards, as the coefficient of the quadratic
term is negative. The coefficient in front, 1√

2πσ
, is a constant that does not depend on x;

hence, we can think of it as simply a “normalization factor” used to ensure that

1√
2πσ

∫ ∞

−∞
exp

(

− 1

2σ2
(x− µ)2

)

= 1.

1Recall from the section notes on linear algebra that Sd
++ is the space of symmetric positive definite n×d

matrices, defined as

S
d

++ =
{

A ∈ R
d×d : A = AT and xTAx > 0 for all x ∈ R

d such that x 6= 0
}

.

2In these notes, we use the notation p(•) to denote density functions, instead of fX(•) (as in the section
notes on probability theory).
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Figure 1: The figure on the left shows a univariate Gaussian density for a single variable X.
The figure on the right shows a multivariate Gaussian density over two variables X1 and X2.

In the case of the multivariate Gaussian density, the argument of the exponential function,
−1

2
(x − µ)TΣ−1(x − µ), is a quadratic form in the vector variable x. Since Σ is positive

definite, and since the inverse of any positive definite matrix is also positive definite, then
for any non-zero vector z, zTΣ−1z > 0. This implies that for any vector x 6= µ,

(x− µ)TΣ−1(x− µ) > 0

−1

2
(x− µ)TΣ−1(x− µ) < 0.

Like in the univariate case, you can think of the argument of the exponential function as
being a downward opening quadratic bowl. The coefficient in front (i.e., 1

(2π)d/2|Σ|1/2 ) has an

even more complicated form than in the univariate case. However, it still does not depend
on x, and hence it is again simply a normalization factor used to ensure that

1

(2π)d/2|Σ|1/2
∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

dx1dx2 · · · dxd = 1.

2 The covariance matrix

The concept of the covariance matrix is vital to understanding multivariate Gaussian
distributions. Recall that for a pair of random variables X and Y , their covariance is
defined as

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

When working with multiple variables, the covariance matrix provides a succinct way to
summarize the covariances of all pairs of variables. In particular, the covariance matrix,
which we usually denote as Σ, is the n× d matrix whose (i, j)th entry is Cov[Xi, Xj ].
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The following proposition (whose proof is provided in the Appendix A.1) gives an alter-
native way to characterize the covariance matrix of a random vector X:

Proposition 1. For any random vector X with mean µ and covariance matrix Σ,

Σ = E[(X − µ)(X − µ)T ] = E[XXT ]− µµT . (1)

In the definition of multivariate Gaussians, we required that the covariance matrix Σ
be symmetric positive definite (i.e., Σ ∈ Sd

++). Why does this restriction exist? As seen
in the following proposition, the covariance matrix of any random vector must always be
symmetric positive semidefinite:

Proposition 2. Suppose that Σ is the covariance matrix corresponding to some random

vector X. Then Σ is symmetric positive semidefinite.

Proof. The symmetry of Σ follows immediately from its definition. Next, for any vector
z ∈ Rd, observe that

zTΣz =
d
∑

i=1

d
∑

j=1

(Σijzizj) (2)

=
d
∑

i=1

d
∑

j=1

(Cov[Xi, Xj ] · zizj)

=
d
∑

i=1

d
∑

j=1

(E[(Xi − E[Xi])(Xj − E[Xj])] · zizj)

= E

[

d
∑

i=1

d
∑

j=1

(Xi − E[Xi])(Xj − E[Xj]) · zizj
]

. (3)

Here, (2) follows from the formula for expanding a quadratic form (see section notes on linear
algebra), and (3) follows by linearity of expectations (see probability notes).

To complete the proof, observe that the quantity inside the brackets is of the form
∑

i

∑

j xixjzizj = (xT z)2 ≥ 0 (see problem set #1). Therefore, the quantity inside the
expectation is always nonnegative, and hence the expectation itself must be nonnegative.
We conclude that zTΣz ≥ 0.

From the above proposition it follows that Σ must be symmetric positive semidefinite in
order for it to be a valid covariance matrix. However, in order for Σ−1 to exist (as required in
the definition of the multivariate Gaussian density), then Σ must be invertible and hence full
rank. Since any full rank symmetric positive semidefinite matrix is necessarily symmetric
positive definite, it follows that Σ must be symmetric positive definite.
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3 The diagonal covariance matrix case

To get an intuition for what a multivariate Gaussian is, consider the simple case where n = 2,
and where the covariance matrix Σ is diagonal, i.e.,

x =

[

x1

x2

]

µ =

[

µ1

µ2

]

Σ =

[

σ2
1 0
0 σ2

2

]

In this case, the multivariate Gaussian density has the form,

p(x;µ,Σ) =
1

2π

∣

∣

∣

∣

σ2
1 0
0 σ2

2

∣

∣

∣

∣

1/2
exp

(

−1

2

[

x1 − µ1

x2 − µ2

]T [
σ2
1 0
0 σ2

2

]−1 [
x1 − µ1

x2 − µ2

]

)

=
1

2π(σ2
1 · σ2

2 − 0 · 0)1/2 exp
(

−1

2

[

x1 − µ1

x2 − µ2

]T
[

1
σ2

1

0

0 1
σ2

2

]

[

x1 − µ1

x2 − µ2

]

)

,

where we have relied on the explicit formula for the determinant of a 2× 2 matrix3, and the
fact that the inverse of a diagonal matrix is simply found by taking the reciprocal of each
diagonal entry. Continuing,

p(x;µ,Σ) =
1

2πσ1σ2

exp

(

−1

2

[

x1 − µ1

x2 − µ2

]T
[

1
σ2

1

(x1 − µ1)
1
σ2

2

(x2 − µ2)

])

=
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

=
1√
2πσ1

exp

(

− 1

2σ2
1

(x1 − µ1)
2

)

· 1√
2πσ2

exp

(

− 1

2σ2
2

(x2 − µ2)
2

)

.

The last equation we recognize to simply be the product of two independent Gaussian den-
sities, one with mean µ1 and variance σ2

1, and the other with mean µ2 and variance σ2
2.

More generally, one can show that an d-dimensional Gaussian with mean µ ∈ Rd and di-
agonal covariance matrix Σ = diag(σ2

1, σ
2
2, . . . , σ

2
d) is the same as a collection of d independent

Gaussian random variables with mean µi and variance σ2
i , respectively.

4 Isocontours

Another way to understand a multivariate Gaussian conceptually is to understand the shape
of its isocontours. For a function f : R2 → R, an isocontour is a set of the form

{

x ∈ R2 : f(x) = c
}

.

for some c ∈ R.4

3Namely,

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad− bc.

4Isocontours are often also known as level curves. More generally, a level set of a function f : Rd → R,
is a set of the form

{

x ∈ R
2 : f(x) = c

}

for some c ∈ R.
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4.1 Shape of isocontours

What do the isocontours of a multivariate Gaussian look like? As before, let’s consider the
case where n = 2, and Σ is diagonal, i.e.,

x =

[

x1

x2

]

µ =

[

µ1

µ2

]

Σ =

[

σ2
1 0
0 σ2

2

]

As we showed in the last section,

p(x;µ,Σ) =
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

. (4)

Now, let’s consider the level set consisting of all points where p(x;µ,Σ) = c for some constant
c ∈ R. In particular, consider the set of all x1, x2 ∈ R such that

c =
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

2πcσ1σ2 = exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

log(2πcσ1σ2) = − 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

log

(

1

2πcσ1σ2

)

=
1

2σ2
1

(x1 − µ1)
2 +

1

2σ2
2

(x2 − µ2)
2

1 =
(x1 − µ1)

2

2σ2
1 log

(

1
2πcσ1σ2

) +
(x2 − µ2)

2

2σ2
2 log

(

1
2πcσ1σ2

) .

Defining

r1 =

√

2σ2
1 log

(

1

2πcσ1σ2

)

r2 =

√

2σ2
2 log

(

1

2πcσ1σ2

)

,

it follows that

1 =

(

x1 − µ1

r1

)2

+

(

x2 − µ2

r2

)2

. (5)

Equation (5) should be familiar to you from high school analytic geometry: it is the equation
of an axis-aligned ellipse, with center (µ1, µ2), where the x1 axis has length 2r1 and the
x2 axis has length 2r2!

4.2 Length of axes

To get a better understanding of how the shape of the level curves vary as a function of
the variances of the multivariate Gaussian distribution, suppose that we are interested in
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Figure 2:
The figure on the left shows a heatmap indicating values of the density function for an

axis-aligned multivariate Gaussian with mean µ =

[

3
2

]

and diagonal covariance matrix Σ =
[

25 0
0 9

]

. Notice that the Gaussian is centered at (3, 2), and that the isocontours are all

elliptically shaped with major/minor axis lengths in a 5:3 ratio. The figure on the right
shows a heatmap indicating values of the density function for a non axis-aligned multivariate

Gaussian with mean µ =

[

3
2

]

and covariance matrix Σ =

[

10 5
5 5

]

. Here, the ellipses are

again centered at (3, 2), but now the major and minor axes have been rotated via a linear
transformation.
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the values of r1 and r2 at which c is equal to a fraction 1/e of the peak height of Gaussian
density.

First, observe that maximum of Equation (4) occurs where x1 = µ1 and x2 = µ2. Substi-
tuting these values into Equation (4), we see that the peak height of the Gaussian density
is 1

2πσ1σ2

.

Second, we substitute c = 1
e

(

1
2πσ1σ2

)

into the equations for r1 and r2 to obtain

r1 =

√

√

√

√

√2σ2
1 log





1

2πσ1σ2 · 1
e

(

1
2πσ1σ2

)



 = σ1

√
2

r2 =

√

√

√

√

√2σ2
2 log





1

2πσ1σ2 · 1
e

(

1
2πσ1σ2

)



 = σ2

√
2.

From this, it follows that the axis length needed to reach a fraction 1/e of the peak height of
the Gaussian density in the ith dimension grows in proportion to the standard deviation σi.
Intuitively, this again makes sense: the smaller the variance of some random variable xi, the
more “tightly” peaked the Gaussian distribution in that dimension, and hence the smaller
the radius ri.

4.3 Non-diagonal case, higher dimensions

Clearly, the above derivations rely on the assumption that Σ is a diagonal matrix. However,
in the non-diagonal case, it turns out that the picture is not all that different. Instead
of being an axis-aligned ellipse, the isocontours turn out to be simply rotated ellipses.
Furthermore, in the d-dimensional case, the level sets form geometrical structures known as
ellipsoids in Rd.

5 Linear transformation interpretation

In the last few sections, we focused primarily on providing an intuition for how multivariate
Gaussians with diagonal covariance matrices behaved. In particular, we found that an d-
dimensional multivariate Gaussian with diagonal covariance matrix could be viewed simply
as a collection of d independent Gaussian-distributed random variables with means and vari-
ances µi and σ2

i , respectvely. In this section, we dig a little deeper and provide a quantitative
interpretation of multivariate Gaussians when the covariance matrix is not diagonal.

The key result of this section is the following theorem (see proof in Appendix A.2).

Theorem 1. Let X ∼ N (µ,Σ) for some µ ∈ Rd and Σ ∈ Sd
++. Then, there exists a matrix

B ∈ Rd×d such that if we define Z = B−1(X − µ), then Z ∼ N (0, I).
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To understand the meaning of this theorem, note that if Z ∼ N (0, I), then using the
analysis from Section 4, Z can be thought of as a collection of d independent standard normal
random variables (i.e., Zi ∼ N (0, 1)). Furthermore, if Z = B−1(X − µ) then X = BZ + µ
follows from simple algebra.

Consequently, the theorem states that any random variable X with a multivariate Gaus-
sian distribution can be interpreted as the result of applying a linear transformation (X =
BZ + µ) to some collection of d independent standard normal random variables (Z).
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Appendix A.1

Proof. We prove the first of the two equalities in (1); the proof of the other equality is similar.

Σ =







Cov[X1, X1] · · · Cov[X1, Xd]
...

. . .
...

Cov[Xd, X1] · · · Cov[Xd, Xd]







=







E[(X1 − µ1)
2] · · · E[(X1 − µ1)(Xd − µd)]

...
. . .

...
E[(Xd − µd)(X1 − µ1)] · · · E[(Xd − µd)

2]







= E







(X1 − µ1)
2 · · · (X1 − µ1)(Xd − µd)

...
. . .

...
(Xd − µd)(X1 − µ1) · · · (Xd − µd)

2






(6)

= E













X1 − µ1
...

Xd − µd







[

X1 − µ1 · · · Xd − µd

]






(7)

= E
[

(X − µ)(X − µ)T
]

.

Here, (6) follows from the fact that the expectation of a matrix is simply the matrix found
by taking the componentwise expectation of each entry. Also, (7) follows from the fact that
for any vector z ∈ Rd,

zzT =











z1
z2
...
zd











[

z1 z2 · · · zd
]

=











z1z1 z1z2 · · · z1zd
z2z1 z2z2 · · · z2zd
...

...
. . .

...
zdz1 zdz2 · · · zdzd











.

Appendix A.2

We restate the theorem below:

Theorem 1. Let X ∼ N (µ,Σ) for some µ ∈ Rd and Σ ∈ Sd
++. Then, there exists a matrix

B ∈ Rd×d such that if we define Z = B−1(X − µ), then Z ∼ N (0, I).

The derivation of this theorem requires some advanced linear algebra and probability
theory and can be skipped for the purposes of this class. Our argument will consist of two
parts. First, we will show that the covariance matrix Σ can be factorized as Σ = BBT

for some invertible matrix B. Second, we will perform a “change-of-variable” from X to a
different vector valued random variable Z using the relation Z = B−1(X − µ).
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Step 1: Factorizing the covariance matrix. Recall the following two properties of
symmetric matrices from the notes on linear algebra5:

1. Any real symmetric matrix A ∈ Rd×d can always be represented as A = UΛUT , where
U is a full rank orthogonal matrix containing of the eigenvectors of A as its columns,
and Λ is a diagonal matrix containing A’s eigenvalues.

2. If A is symmetric positive definite, all its eigenvalues are positive.

Since the covariance matrix Σ is positive definite, using the first fact, we can write Σ = UΛUT

for some appropriately defined matrices U and Λ. Using the second fact, we can define
Λ1/2 ∈ Rd×d to be the diagonal matrix whose entries are the square roots of the corresponding
entries from Λ. Since Λ = Λ1/2(Λ1/2)T , we have

Σ = UΛUT = UΛ1/2(Λ1/2)TUT = UΛ1/2(UΛ1/2)T = BBT ,

where B = UΛ1/2.6 In this case, then Σ−1 = B−TB−1, so we can rewrite the standard
formula for the density of a multivariate Gaussian as

p(x;µ,Σ) =
1

(2π)d/2|BBT |1/2 exp
(

−1

2
(x− µ)TB−TB−1(x− µ)

)

. (8)

Step 2: Change of variables. Now, define the vector-valued random variable Z =
B−1(X−µ). A basic formula of probability theory, which we did not introduce in the section
notes on probability theory, is the “change-of-variables” formula for relating vector-valued
random variables:

Suppose that X =
[

X1 · · · Xd

]T ∈ Rd is a vector-valued random variable with
joint density function fX : Rd → R. If Z = H(X) ∈ Rd where H is a bijective,
differentiable function, then Z has joint density fZ : Rd → R, where

fZ(z) = fX(x) ·

∣

∣

∣

∣

∣

∣

∣

det













∂x1

∂z1
· · · ∂x1

∂zd
...

. . .
...

∂xd

∂z1
· · · ∂xd

∂zd













∣

∣

∣

∣

∣

∣

∣

.

Using the change-of-variable formula, one can show (after some algebra, which we’ll skip)
that the vector variable Z has the following joint density:

pZ(z) =
1

(2π)d/2
exp

(

−1

2
zT z

)

. (9)

The claim follows immediately. �

5See section on “Eigenvalues and Eigenvectors of Symmetric Matrices.”
6To show that B is invertible, it suffices to observe that U is an invertible matrix, and right-multiplying

U by a diagonal matrix (with no zero diagonal entries) will rescale its columns but will not change its rank.
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