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Elements of Probability

Sample Space Ω

{HH,HT ,TH,TT}

Event A ⊆ Ω

{HH,HT}, Ω

Event Space F

Probability Measure P : F → R
P(A) ≥ 0 ∀A ∈ F

P(Ω) = 1

If A1,A2, ... disjoint set of events (Ai ∩ Aj = ∅ when i 6= j),
then

P

(⋃
i

Ai

)
=
∑
i

P(Ai )
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Conditional Probability and Independence

Let B be any event such that P(B) 6= 0.

P(A|B) := P(A∩B)
P(B)

A ⊥ B if and only if P(A ∩ B) = P(A)P(B)

A ⊥ B if and only if P(A|B) = P(A∩B)
P(B) = P(A)P(B)

P(B) = P(A)
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Random Variables (RV)

ω0 = HHHTHTTHTT

A RV is X : Ω→ R

# of heads: X (ω0) = 5

# of tosses until tails: X (ω0) = 4

Val(X ) := X (Ω)

Val(X ) = {0, 1, ..., 10}
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FX (x) = P(X ≤ x):= P({ω|X (ω) ≤ x})
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Discrete vs. Continuous RV

Discrete RV: Val(X ) countable

P(X = k) := P({ω|X (ω) = k})

Probability Mass Function (PMF)
pX : Val(X ) → [0, 1]

pX (x) := P(X = x)∑
x∈Val(X )

pX (x) = 1

Continuous RV: Val(X ) uncountable

P(a ≤ X ≤ b) := P({ω|a ≤ X (ω) ≤ b})

Probability Density Function (PDF)
fX : R → R

fX (x) :=
d
dx
FX (x)

fX (x) 6= P(X = x)∫∞
−∞ fX (x)dx︸ ︷︷ ︸

P(x≤X≤x+dx)

= 1
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Expected Value and Variance

g : R→ R

Expected Value

Let X be a discrete RV with PMF pX .

E[g(X )] :=
∑

x∈Val(X )

g(x)pX (x)

Let X be a continuous RV with PDF fX .

E[g(X )] :=
∫∞
−∞ g(x)fX (x)dx

Variance

Var(X ) := E[(X − E[X ])2]= E[X 2]− E[X ]2
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Example Distributions

Distribution PDF or PMF Mean Variance

Bernoulli(p)

{
p, if x = 1
1− p, if x = 0.

p p(1− p)

Binomial(n, p)
(
n
k

)
pk(1− p)n−k for k = 0, 1, ..., n np np(1− p)

Geometric(p) p(1− p)k−1 for k = 1, 2, ... 1
p

1−p
p2

Poisson(λ) e−λλk

k! for k = 0, 1, ... λ λ

Uniform(a, b) 1
b−a for all x ∈ (a, b) a+b

2
(b−a)2

12

Gaussian(µ, σ2) 1
σ
√
2π
e−

(x−µ)2

2σ2 for all x ∈ (−∞,∞) µ σ2

Exponential(λ) λe−λx for all x ≥ 0, λ ≥ 0 1
λ

1
λ2



Two Random Variables

Bivariate CDF

FXY (x , y) = P(X ≤ x ,Y ≤ y)

Bivariate PMF

pXY (x , y) = P(X = x ,Y = y)

Marginal PMF

pX (x) =
∑

y pXY (x , y)

Bivariate PDF

fXY (x , y) = ∂2FXY (x ,y)
∂x∂y

Marginal PDF

fX (x) =
∫∞
−∞ fXY (x , y)dy



Bayes’ Theorem

I Given the conditional probability of an event P(x |y)

I Want to find the ”reverse” conditional probability, P(y |x)

P(y |x) =
P(x |y)P(y)

P(x)

where:P(x) =
∑

y ′∈value y P(x |y ′)P(y ′)

X and Y are continuous

f (y |x) =
f (x |y)f (y)

f (x)

where:f (x) =
∫
y ′∈value y f (x |y ′)f (y ′)dy ′



Example for Bayes Rule

I You randomly choose a treasure chest to open, and then
randomly choose a coin from that treasure chest. If the coin
you choose is gold, then what is the probability that you
choose chest A?

a)
1

3
b)

2

3
c)1 d)None



Independence

Two random variables X and Y are independent if:

I pXY (x , y) = pX (x)pY (y)

I pY |X (x , y) = PY (y)

For continuous random variables:

pXY (x , y)→ fXY (x , y)



Example for independent random variables

I Spin a spinner numbered 1 to 7, and toss a coin. What is the
probability of getting an odd. number on the spinner and a
tail on the coin?

pXY (x , y) = pX (x)pY (y) =
1

2
× 4

7
=

2

7



Expectation

I X, Y :Two continuous random variables

I g , R2 → R : A function of X and Y

E (g(x , y)) =

∫
x∈Val(x)

∫
y∈Val(y)

g(x , y)fXY (x , y)dxdy

Example

g(x , y) = 3x , fx ,y = 4xy , 0 < x < 1, 0 < y < 1

E (g(x , y)) =
∫ 1
0

∫ 1
0 3x × 4xy dxdy



Covariance of two random variables X and Y

Cov [x , y ] = E [(x − E [x ])(y − (E [y ]))]

= E (XY )− E (X )E (Y )

If X and Y are independent, then:

E (XY ) = E (X )E (Y )→ Cov [x , y ] = 0

Var [X + Y ] = [E (X + Y )]2 − E ((X + Y )2)

Var [X + Y ] = Var [X ] + Var [Y ] + 2Cov [X ,Y ]



Multivariant Gaussian (Normal) distribution

x ∈ IRn. Model p(x1), p(x2), ....etc . at the same time. Parameters
:µ ∈ IRn,Σ ∈ IRn×n(covariancematrix)

p(x ;µ,Σ) =
1

(2π)n/2|Σ|
1
2

exp(−1

2
(x − µ)TΣ−1(x − µ))



Multivariant Gaussian (Normal examples)
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Multivariant Gaussian (Normal examples)



Multivariant Gaussian (Normal examples)



Conditional Probability and Expectation

Remember:

Let B be any event such that P(B) 6= 0.

P(A|B) := P(A∩B)
P(B)



Conditional Probability and Expectation

X,Y are RVs with the same probability space,

we have

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)

E(X |Y = y) =
∑
x

x
P(X = x ,Y = y)

P(Y = y)



Conditional Probability and Expectation

E[X |Y ]

It is actually a random variable

E[X |Y ](y) = E[X |Y = y ] is a function of Y
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Law of Total Expectation

Let X, Y be RVs with the same probability space, then

E[X ] = E[E[X |Y ]]

A brief proof of X,Y being discrete and finite

E[E[X |Y ]] = E[
∑
x

xP(X = x |Y )]

=
∑
y

(
∑
x

xP(X = x |Y = y))P(Y = y)

=
∑
y

∑
x

xP(X = x ,Y = y)

=
∑
x

x(
∑
y

P(X = x ,Y = y))

=
∑
x

xP(X = x)

= E[X ]
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∑
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∑
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∑
y

∑
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∑
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∑
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∑
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More Conditioned Bayes Rule

P(a|b, c) =
P(b|a, c)P(a|c)

P(b|c)

It is actually the same as the Bayes Rule:

P(a|b) =
P(b|a)P(a)

P(b)

with a random variable c that all the probabilities are
conditioned on.



More Conditioned Bayes Rule

A proof:

P(b|a, c)P(a|c)

P(b|c)
=

P(b, a, c)P(a|c)

P(b|c)P(a, c)

=
P(b, a, c)P(a, c)

P(b|c)P(a, c)P(c)

=
P(b, a, c)

P(b|c)P(c)

=
P(b, a, c)

P(b, c)

= P(a|b, c)


