Review of Probability Theory

Zahra Koochak and Jeremy Irvin

Elements of Probability

Elements of Probability

Sample Space Ω

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Event $A \subseteq \Omega$

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Event $A \subseteq \Omega$
$\{H H, H T\}$,

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Event $A \subseteq \Omega$
$\{H H, H T\}, \Omega$

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Event $A \subseteq \Omega$

$$
\{H H, H T\}, \Omega
$$

Event Space \mathcal{F}

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Event $A \subseteq \Omega$

$$
\{H H, H T\}, \Omega
$$

Event Space \mathcal{F}
Probability Measure $P: \mathcal{F} \rightarrow \mathbb{R}$

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Event $A \subseteq \Omega$

$$
\{H H, H T\}, \Omega
$$

Event Space \mathcal{F}
Probability Measure $P: \mathcal{F} \rightarrow \mathbb{R}$

$$
P(A) \geq 0 \quad \forall A \in \mathcal{F}
$$

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Event $A \subseteq \Omega$

$$
\{H H, H T\}, \Omega
$$

Event Space \mathcal{F}
Probability Measure $P: \mathcal{F} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& P(A) \geq 0 \quad \forall A \in \mathcal{F} \\
& P(\Omega)=1
\end{aligned}
$$

Elements of Probability

Sample Space Ω

$$
\{H H, H T, T H, T T\}
$$

Event $A \subseteq \Omega$

$$
\{H H, H T\}, \Omega
$$

Event Space \mathcal{F}
Probability Measure $P: \mathcal{F} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& P(A) \geq 0 \quad \forall A \in \mathcal{F} \\
& P(\Omega)=1
\end{aligned}
$$

If A_{1}, A_{2}, \ldots disjoint set of events $\left(A_{i} \cap A_{j}=\emptyset\right.$ when $\left.i \neq j\right)$, then

$$
P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

Conditional Probability and Independence

Conditional Probability and Independence

Let B be any event such that $P(B) \neq 0$.

Conditional Probability and Independence

Let B be any event such that $P(B) \neq 0$.

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

Conditional Probability and Independence

Let B be any event such that $P(B) \neq 0$.

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

$A \perp B$ if and only if $P(A \cap B)=P(A) P(B)$

Conditional Probability and Independence

Let B be any event such that $P(B) \neq 0$.

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

$A \perp B$ if and only if $P(A \cap B)=P(A) P(B)$
$A \perp B$ if and only if $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A)$

Random Variables (RV)

Random Variables (RV)

$$
\omega_{0}=\text { НННТНТТНТТ }
$$

Random Variables (RV)

$$
\omega_{0}=\text { НННТНТТНТТ }
$$

A $\mathbf{R V}$ is $X: \Omega \rightarrow \mathbb{R}$

Random Variables (RV)

$$
\omega_{0}=\text { НННТНТТНТТ }
$$

A $\mathbf{R V}$ is $X: \Omega \rightarrow \mathbb{R}$
\# of heads: $X\left(\omega_{0}\right)=5$

Random Variables (RV)

$$
\omega_{0}=\text { НННТНТТНТТ }
$$

A $\mathbf{R V}$ is $X: \Omega \rightarrow \mathbb{R}$
\# of heads: $X\left(\omega_{0}\right)=5$
\# of tosses until tails: $X\left(\omega_{0}\right)=4$

Random Variables (RV)

$$
\omega_{0}=\text { НННТНТТНТТ }
$$

A $\mathbf{R V}$ is $X: \Omega \rightarrow \mathbb{R}$
\# of heads: $X\left(\omega_{0}\right)=5$
\# of tosses until tails: $X\left(\omega_{0}\right)=4$
$\operatorname{Val}(X):=X(\Omega)$

Random Variables (RV)

$$
\omega_{0}=\text { НННТНТТНТТ }
$$

A $\mathbf{R V}$ is $X: \Omega \rightarrow \mathbb{R}$
\# of heads: $X\left(\omega_{0}\right)=5$
\# of tosses until tails: $X\left(\omega_{0}\right)=4$
$\operatorname{Val}(X):=X(\Omega)$
$\operatorname{Val}(X)=\{0,1, \ldots, 10\}$

Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

$F_{X}: \mathbb{R} \rightarrow[0,1]$

Cumulative Distribution Function (CDF)

$$
\begin{aligned}
& F_{X}: \mathbb{R} \rightarrow[0,1] \\
& \qquad F_{X}(x)=P(X \leq x)
\end{aligned}
$$

Cumulative Distribution Function (CDF)

$$
\begin{aligned}
& F_{X}: \mathbb{R} \rightarrow[0,1] \\
& \qquad F_{X}(x)=P(X \leq x):=P(\{\omega \mid X(\omega) \leq x\})
\end{aligned}
$$

Cumulative Distribution Function (CDF)

$F_{X}: \mathbb{R} \rightarrow[0,1]$

$$
F_{X}(x)=P(X \leq x):=P(\{\omega \mid X(\omega) \leq x\})
$$

Discrete vs. Continuous RV

Discrete vs. Continuous RV

Discrete RV: Val(X) countable

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable
$P(X=k):=P(\{\omega \mid X(\omega)=k\})$

Probability Mass Function (PMF)
$p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
p_{X}(x):=P(X=x)
$$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
\begin{gathered}
p_{X}(x):=P(X=x) \\
\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1
\end{gathered}
$$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable
Continuous RV: $\operatorname{Val}(X)$ uncountable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
\begin{gathered}
p_{X}(x):=P(X=x) \\
\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1
\end{gathered}
$$

Discrete vs. Continuous RV

Discrete RV: Val (X) countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
\begin{gathered}
p_{X}(x):=P(X=x) \\
\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1
\end{gathered}
$$

Continuous RV: $\operatorname{Val}(X)$ uncountable $P(a \leq X \leq b):=P(\{\omega \mid a \leq X(\omega) \leq b\})$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
\begin{gathered}
p_{X}(x):=P(X=x) \\
\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1
\end{gathered}
$$

Continuous RV: $\operatorname{Val}(X)$ uncountable $P(a \leq X \leq b):=P(\{\omega \mid a \leq X(\omega) \leq b\})$

Probability Density Function (PDF) $\bar{f}_{X}: \mathbb{R} \rightarrow \mathbb{R}$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
\begin{gathered}
p_{X}(x):=P(X=x) \\
\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1
\end{gathered}
$$

Continuous RV: $\operatorname{Val}(X)$ uncountable $P(a \leq X \leq b):=P(\{\omega \mid a \leq X(\omega) \leq b\})$

Probability Density Function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$

$$
f_{X}(x):=\frac{d}{d x} F_{X}(x)
$$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $\overline{p_{X}}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
\begin{gathered}
p_{X}(x):=P(X=x) \\
\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1
\end{gathered}
$$

Continuous RV: $\operatorname{Val}(X)$ uncountable $P(a \leq X \leq b):=P(\{\omega \mid a \leq X(\omega) \leq b\})$

Probability Density Function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& f_{X}(x):=\frac{d}{d x} F_{X}(x) \\
& f_{X}(x) \neq P(X=x)
\end{aligned}
$$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
\begin{gathered}
p_{X}(x):=P(X=x) \\
\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1
\end{gathered}
$$

Continuous RV: $\operatorname{Val}(X)$ uncountable $P(a \leq X \leq b):=P(\{\omega \mid a \leq X(\omega) \leq b\})$

Probability Density Function (PDF) $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& f_{X}(x):=\frac{d}{d x} F_{X}(x) \\
& f_{X}(x) \neq P(X=x) \\
& \int_{-\infty}^{\infty} f_{X}(x) d x
\end{aligned}
$$

Discrete vs. Continuous RV

Discrete RV: $\operatorname{Val}(X)$ countable

$$
P(X=k):=P(\{\omega \mid X(\omega)=k\})
$$

Probability Mass Function (PMF) $p_{X}: \operatorname{Val}(X) \rightarrow[0,1]$

$$
\begin{gathered}
p_{X}(x):=P(X=x) \\
\sum_{x \in \operatorname{Val}(X)} p_{X}(x)=1
\end{gathered}
$$

Continuous RV: $\operatorname{Val}(X)$ uncountable $P(a \leq X \leq b):=P(\{\omega \mid a \leq X(\omega) \leq b\})$
$\xrightarrow{\text { Probability Density Function (PDF) }}$ $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& f_{X}(x):=\frac{d}{d x} F_{X}(x) \\
& f_{X}(x) \neq P(X=x) \\
& \int_{-\infty}^{\infty} \underbrace{f_{X}(x) d x}_{P(x \leq x \leq x+d x)}=1
\end{aligned}
$$

Expected Value and Variance

Expected Value and Variance

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

Expected Value and Variance

$g: \mathbb{R} \rightarrow \mathbb{R}$

Expected Value

Expected Value and Variance

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

Expected Value

Let X be a discrete RV with PMF p_{X}.

Expected Value and Variance

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

Expected Value

Let X be a discrete RV with PMF p_{X}.

$$
\mathbb{E}[g(X)]:=\sum_{x \in \operatorname{Val}(X)} g(x) p_{X}(x)
$$

Expected Value and Variance

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

Expected Value

Let X be a discrete RV with PMF p_{X}.

$$
\mathbb{E}[g(X)]:=\sum_{x \in \operatorname{Val}(X)} g(x) p_{X}(x)
$$

Let X be a continuous RV with PDF f_{X}.

Expected Value and Variance

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

Expected Value

Let X be a discrete RV with PMF p_{X}.

$$
\mathbb{E}[g(X)]:=\sum_{x \in \operatorname{Val}(X)} g(x) p_{X}(x)
$$

Let X be a continuous RV with PDF f_{X}.

$$
\mathbb{E}[g(X)]:=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Expected Value and Variance

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

Expected Value

Let X be a discrete RV with PMF p_{X}.

$$
\mathbb{E}[g(X)]:=\sum_{x \in \operatorname{Val}(X)} g(x) p_{X}(x)
$$

Let X be a continuous RV with PDF f_{X}.

$$
\mathbb{E}[g(X)]:=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Variance

Expected Value and Variance

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

Expected Value

Let X be a discrete RV with PMF p_{X}.

$$
\mathbb{E}[g(X)]:=\sum_{x \in \operatorname{Val}(X)} g(x) p_{X}(x)
$$

Let X be a continuous RV with PDF f_{X}.

$$
\mathbb{E}[g(X)]:=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Variance

$$
\operatorname{Var}(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

Expected Value and Variance

$$
g: \mathbb{R} \rightarrow \mathbb{R}
$$

Expected Value

Let X be a discrete RV with PMF p_{X}.

$$
\mathbb{E}[g(X)]:=\sum_{x \in \operatorname{Val}(X)} g(x) p_{X}(x)
$$

Let X be a continuous RV with PDF f_{X}.

$$
\mathbb{E}[g(X)]:=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Variance

$$
\operatorname{Var}(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Example Distributions

Distribution	PDF or PMF	Mean	Variance
Bernoulli (p)	$\begin{cases}p, & \text { if } x=1 \\ 1-p, & \text { if } x=0 .\end{cases}$	p	$p(1-p)$
Binomial (n, p)	$\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0,1, \ldots, n$	$n p$	$n p(1-p)$
Geometric (p)	$p(1-p)^{k-1}$ for $k=1,2, \ldots$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
Poisson (λ)	$\frac{e^{-\lambda} \lambda^{k}}{k!}$ for $k=0,1, \ldots$	λ	λ
Uniform (a, b)	$\frac{1}{b-a}$ for all $x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
$\operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$	$\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ for all $x \in(-\infty, \infty)$	μ	σ^{2}
$\operatorname{Exponential~}(\lambda)$	$\lambda e^{-\lambda x}$ for all $x \geq 0, \lambda \geq 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$

Two Random Variables

Bivariate CDF

$$
F_{X Y}(x, y)=P(X \leq x, Y \leq y)
$$

Bivariate PMF

$$
p_{X Y}(x, y)=P(X=x, Y=y)
$$

Marginal PMF

$$
p_{X}(x)=\sum_{y} p_{X Y}(x, y)
$$

Bivariate PDF

$$
f_{X Y}(x, y)=\frac{\partial^{2} F_{X Y}(x, y)}{\partial x \partial y}
$$

Marginal PDF

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y
$$

Bayes' Theorem

- Given the conditional probability of an event $P(x \mid y)$
- Want to find the " reverse" conditional probability, $P(y \mid x)$

$$
P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}
$$

where: $P(x)=\sum_{y^{\prime} \in \text { value } y} P\left(x \mid y^{\prime}\right) P\left(y^{\prime}\right)$
X and Y are continuous

$$
f(y \mid x)=\frac{f(x \mid y) f(y)}{f(x)}
$$

where: $f(x)=\int_{y^{\prime} \in \text { value } y} f\left(x \mid y^{\prime}\right) f\left(y^{\prime}\right) d y^{\prime}$

Example for Bayes Rule

- You randomly choose a treasure chest to open, and then randomly choose a coin from that treasure chest. If the coin you choose is gold, then what is the probability that you choose chest A?
$\begin{array}{llll}\text { a) } \frac{1}{3} & \text { b) } \frac{2}{3} & \text { c) } 1 & \text { d)None }\end{array}$

Independence

Two random variables X and Y are independent if:

- $p_{X Y}(x, y)=p_{X}(x) p_{Y}(y)$
- $p_{Y \mid X}(x, y)=P_{Y}(y)$

For continuous random variables:

$$
p_{X Y}(x, y) \rightarrow f_{X Y}(x, y)
$$

Example for independent random variables

- Spin a spinner numbered 1 to 7 , and toss a coin. What is the probability of getting an odd. number on the spinner and a tail on the coin?

$$
p_{X Y}(x, y)=p_{X}(x) p_{Y}(y)=\frac{1}{2} \times \frac{4}{7}=\frac{2}{7}
$$

Expectation

- X, Y :Two continuous random variables
- $\mathrm{g}, \mathrm{R} 2 \rightarrow \mathrm{R}: \mathrm{A}$ function of X and Y

$$
E(g(x, y))=\int_{x \in \operatorname{Val}(x)} \int_{y \in \operatorname{Val}(y)} g(x, y) f_{X Y}(x, y) d x d y
$$

Example

$$
\begin{aligned}
& g(x, y)=3 x, f_{x, y}=4 x y, \quad 0<x<1, \quad 0<y<1 \\
& E(g(x, y))=\int_{0}^{1} \int_{0}^{1} 3 x \times 4 x y d x d y
\end{aligned}
$$

Covariance of two random variables X and Y

$$
\begin{aligned}
\operatorname{Cov}[x, y] & =E[(x-E[x])(y-(E[y]))] \\
& =E(X Y)-E(X) E(Y)
\end{aligned}
$$

If X and Y are independent, then:

$$
\begin{gathered}
E(X Y)=E(X) E(Y) \rightarrow \operatorname{Cov}[x, y]=0 \\
\operatorname{Var}[X+Y]=[E(X+Y)]^{2}-E\left((X+Y)^{2}\right) \\
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]
\end{gathered}
$$

Multivariant Gaussian (Normal) distribution

$x \in \mathbb{R}^{\mathrm{n}}$. Model $p\left(x_{1}\right), p\left(x_{2}\right), \ldots$. etc. at the same time. Parameters $: \mu \in \mathbb{R}^{\mathrm{n}}, \Sigma \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ (covariancematrix)

$$
p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Multivariant Gaussian (Normal examples)

$$
\begin{aligned}
& \Sigma=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \\
& \mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma=\begin{array}{c}
0.7 \\
0
\end{array} \\
& \mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

$$
0.7
$$

$$
\begin{array}{ll}
\Sigma=\begin{array}{rr}
1.5 & 0 \\
0 & 1.5 \\
\mu & =\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{array}
\end{array}
$$

Multivariant Gaussian (Normal examples)

$$
\begin{aligned}
& \Sigma=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \\
& \mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma=\begin{array}{c}
0.6 \\
0
\end{array} \\
& \mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma=\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array} \\
& \mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

Multivariant Gaussian (Normal examples)

$$
\begin{gathered}
\Sigma=\begin{array}{c}
1 \\
0.5
\end{array} \\
\mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{gathered}
$$

$$
\begin{array}{r}
0.5 \\
1
\end{array}
$$

$$
\begin{gathered}
\Sigma=\begin{array}{c}
1 \\
0.8
\end{array} \\
\mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{gathered}
$$

$$
\begin{aligned}
& \Sigma=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \\
& \mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

Multivariant Gaussian (Normal examples)

$$
\begin{aligned}
& \Sigma=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \\
& \mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma=\begin{array}{cr}
1 & -0.5 \\
-0.5 & 1 \\
\mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{array}, \begin{array}{l}
1
\end{array}{ }^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma=\begin{array}{cr}
1 & -0.8 \\
-0.8 & 1 \\
\mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{array}, \begin{array}{l}
1
\end{array},{ }^{\top}
\end{aligned}
$$

Multivariant Gaussian (Normal examples)

$$
\begin{aligned}
& \Sigma=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \\
& \mu=\left[\begin{array}{ll}
0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

$$
\Sigma=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}
$$

$$
\mu=\left[\begin{array}{ll}
0 & 0.5
\end{array}\right]^{\top}
$$

$$
\begin{aligned}
& \Sigma=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \\
& \mu=\left[\begin{array}{ll}
1.5 & -0.5
\end{array}\right]^{\top}
\end{aligned}
$$

Conditional Probability and Expectation

Remember:

Let B be any event such that $P(B) \neq 0$.
$P(A \mid B):=\frac{P(A \cap B)}{P(B)}$

Conditional Probability and Expectation

X, Y are RV s with the same probability space,
we have

$$
\begin{aligned}
& P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)} \\
& \mathbb{E}(X \mid Y=y)=\sum_{x} x \frac{P(X=x, Y=y)}{P(Y=y)}
\end{aligned}
$$

Conditional Probability and Expectation

$\mathbb{E}[X \mid Y]$

Conditional Probability and Expectation

$\mathbb{E}[X \mid Y]$

It is actually a random variable
$\mathbb{E}[X \mid Y](y)=\mathbb{E}[X \mid Y=y]$ is a function of Y

Law of Total Expectation

Let X, Y be RV s with the same probability space, then $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]$

Law of Total Expectation

Let X, Y be RV s with the same probability space, then $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]$
A brief proof of X, Y being discrete and finite

Law of Total Expectation

Let X, Y be RV s with the same probability space, then $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]$
A brief proof of X, Y being discrete and finite

$$
\begin{aligned}
\mathbb{E}[\mathbb{E}[X \mid Y]] & =\mathbb{E}\left[\sum_{x} x P(X=x \mid Y)\right] \\
& =\sum_{y}\left(\sum_{x} x P(X=x \mid Y=y)\right) P(Y=y) \\
& =\sum_{y} \sum_{x} x P(X=x, Y=y) \\
& =\sum_{x} x\left(\sum_{y} P(X=x, Y=y)\right) \\
& =\sum_{x} x P(X=x) \\
& =\mathbb{E}[X]
\end{aligned}
$$

More Conditioned Bayes Rule

$$
P(a \mid b, c)=\frac{P(b \mid a, c) P(a \mid c)}{P(b \mid c)}
$$

It is actually the same as the Bayes Rule:

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

with a random variable c that all the probabilities are conditioned on.

More Conditioned Bayes Rule

A proof:

$$
\begin{aligned}
\frac{P(b \mid a, c) P(a \mid c)}{P(b \mid c)} & =\frac{P(b, a, c) P(a \mid c)}{P(b \mid c) P(a, c)} \\
& =\frac{P(b, a, c) P(a, c)}{P(b \mid c) P(a, c) P(c)} \\
& =\frac{P(b, a, c)}{P(b \mid c) P(c)} \\
& =\frac{P(b, a, c)}{P(b, c)} \\
& =P(a \mid b, c)
\end{aligned}
$$

