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Abstract

The goal of this note is to derive the exponential form of probability distribution from
more basic considerations, in particular Entropy. It follows a description by ET Jaynes
in Chapter 11 of his book Probability Theory: the Logic of Science [1].1

1 Motivating the Exponential Model

This section will motivate the exponential model form that we’ve seen in lecture.

The Setup The setup for our problem is that we are given a finite set of instances Y and
a set of m statistics (Tj, cj) in which Tj : Y → R and cj ∈ R. An instance (or possible
world) is just an element in a set. We can think about a statistic as a measurement of an
instance, it tells us the important features of that instance that are important for our model.
More precisely, the only information we have about the instances is the values of Ti on these
instances. Our goal is to find a probability function p such that

p : Y → [0, 1] such that
∑
y∈Y

p(y) = 1.

The main goal of this note is to provide a set of assumptions under which such distri-
butions have a specific functional form, the exponential family, that we saw in generalized
linear model:

p(y; η) = exp {η · T (y)− a(η)}
in which η ∈ Rm, T (y) ∈ Rm and T (y)j = Tj(y). Notice that there is exactly one parameter
for each statistic. As we’ll see for discrete distributions, we are able to derive this exponential
form as a consequences of a maximizing entropy subject to matching the statistics.2

1This work is available online in many places including http://omega.albany.edu:8008/ETJ-PS/cc11g.

ps.
2Unfortunately, for continuous distributions, such a derivation does not work due to some technical issues

with Entropy–this hasn’t stopped folks from using it as justification.
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1.1 The problem: Too many distributions!

We’ll see the problem of defining a distribution from statistics (measurements). We’ll see
that often there are often many probability distributions that satisfy our constraints, and
we’ll be forced to pick among them.3

The Constraints We interpret a statistic as a constraint on p of the following form:

Ep[Tj] = cj i.e.,
N∑
i=1

Tj(yi)pi = 〈Tj, p〉 = cj

Let’s get some notation to describe these constraints. Let N = |Y|, then the probability we
are after is p ∈ RN subject to constraints.

• There are m constraints of the form

〈Tj, p〉 = cj for j = 1, . . . ,m.

• A single constraint of the form
∑N

i=1 pi = 1 to ensure that p is a probability distribution.
We can write this more succinctly as 〈1, p〉 = 1.

• We also have that pi ≥ 0 for i = 1, . . . , N .

More compactly, we can write all constraints in a matrix G as

G =

(
1
T

)
∈ R(m+1)×N so that Gp =

(
1
c

)
.

If N(G) = ∅, then this means that p is uniquely defined as G has an inverse. In this case,
p = G−1c. However often m is much smaller than N , so that N(G) 6= ∅–and there are many
solutions that satisfy the constraints.

Example 1.1 Suppose we have three possible worlds, i.e., Y = {y1, y2, y3} and one statistic
T (yi) = i and c = 2.5. Then, we have:

G =

(
1 1 1
1 2 3

)
and N(G) =

 1
−2
1


Let p(1) = (1/12, 1/3, 7/12) then Gp = (1, 2.5)T–but so do (infinitely) many others, in par-
ticular q(α) = p(1) + α(1,−2, 1) is valid so long as α ∈ [−1/12, 1/6] (due to positivity).

3Throughout this section, it will be convenient to view p and Tj as functions from Y → R–and also as
vectors indexed by Y. Their use should be clear from the context.
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Picking a probability distribution p In the case ∅ 6= N(G), there are many probability
distributions we can pick. All of these distributions can be written as follows:

p = p(0) + p(1) in which p(0) ∈ N(G) and p(1) satisfies Gp(1) =

(
1
c

)
Example 1.2 Continuing the computation above, we see p(0) = α(1,−2, 1) is a vector in
N(G).

Which p should we pick? Well, we’ll use one method called the method of maximum
entropy. In turn, this will lead to the fact that our function p has a very special form–the
form of exponential family distributions!

1.2 Entropy

To pick among the distributions, we’ll need some scoring method.4 We’ll cut to the chase
here and define the entropy, which is a function on probability distributions p ∈ RN such
that p ≥ 0 and 〈1, p〉 = 1.

H(p) = −
N∑
i=1

pi log pi

Effectively, the entropy rewards one for “spreading” the distribution out more. One can
motivate Entropy from axioms, and either Jaynes or the Wikipedia page is pretty good
on this account.5. The intuition should be that entropy can be used to select the least
informative prior, it’s a way of making as few additional assumptions as possible. In other
words, we want to encode the prior information given by the constraints on the statistics
while being as “objective” or “agnostic” as possible. This is called the maximum entropy
principle.

For example, one can verify that under no constraints, H(p) is maximized with pi = N−1–
that is all alternatives have equal probability. This is what we mean by spread out.

We’ll pick the distribution that maximizes entropy subject to our constraints. Mathe-
matically, we’ll examine:

max
p∈RN

H(p) s.t. 〈1, p〉 = 1, p ≥ 0, and Tp = c

We will not discuss it, but under appropriate conditions there is a unique solution p.

4A few natural methods don’t work as we might think they should (minimizing variance, etc.) See [1,
Ch.11] for a description of these alternative approaches.

5https://en.wikipedia.org/wiki/Entropy_(information_theory)#Rationale
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1.3 The Lagrangian

We’ll create a function called the Lagrangian that has the property that any critical point of
the Lagrangian is a critical point of the constrained problem. We will show that all critical
points of the Lagrangian (and so our original problem) can be written in the exponential
format we described above.

To simplify our discussion, let’s imagine that p > 0, i.e,. there are no possible worlds y
such that p(y) = 0. In this case, our problem reduces to:

max
p∈RN

H(p) s.t. Tp = c and 〈1, p〉 = 1

We can write the Lagrangian L : RN × (Rm × R)→ R as follows:

L(p; η, λ) = H(p) + 〈η, Tp− c〉+ λ (〈1, p〉 − 1)

The special property of L is that any critical point of our original solution, in particular
any maximum or minimum corresponds to a critical point of the Lagrangian. Thus, if we
prove something about critical points of the Lagrangian, we prove something about the
critical points of the original function. Later in the course, we’ll see more sophisticated uses
of Lagrangians but for now we include a simple derivation below to give a hint what’s going
on. For this section, we’ll assume this special property is true.

Due to that special property, we find the critical points of L by differentiating with
respect to pi and setting the resulting equations to 0.

∂

∂pi
L =

∂

∂pi
[H(p) + 〈η, Tp− c〉+ λ(〈1, p〉 − 1)]

= −(log pi + 1) + 〈η, T (yi)〉+ λ

Setting this expression equal to 0 and solving for pi we learn:

pi = eλ−1 exp {〈η, T (yi)〉}
⇒ p(y) ∝ exp{η · T (y)}

which is of the right form–except that we have one too many parameters, namely λ. Nev-
ertheless, this is remarkable: at a critical point, it’s always the case that the exponential
family “pops out”!

Eliminating λ The parameter λ can be eliminated, which is the final step to match our
original claimed exponential form. To do so, we sum over all the pi which we know on one
hand is equal to 1, and the other hand, we have the above expression for pi. This gives us
the following equation:

N∑
i=1

pi = 1 and
N∑
i=1

pi = eλ−1

(
N∑
i=1

exp {η · T (yi)}

)
thus e−λ+1 =

(∑
y∈Y

exp {η · T (y)}

)
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Thus, we have expressed λ as a function of η and we can eliminate it. To do so, we write:

Z(η) =
∑
y∈Y

exp {η · T (y)}

⇒ p(y; η) = Z(η)−1 exp{η · T (y)}
= exp{η · T (y)− a(η)} where a(η) = logZ(η)

This function Z is called the partition function, and a is called the log-partition function.
The above is the claimed exponential form we saw in lecture.

2 Why the Lagrangian? [optional]

We observe that this is a constrained optimization problem with linear constraints.6

Let r be the rank of G and so dim(N(G)) = N − r. We create a function φ : RN−r → R
such that there is a map between any point in the domain of φ and a feasible solution to
our constrained problem, and moreover φ will take the same value as H. In contrast to our
original constrained problem, φ has an unconstrained domain (all of RN−r), and so we can
apply standard calculus to find its critical points. To that end, we define a (linear) map
B ∈ RN×(N−r) that has rank N − r. We also insist that BTB = IN−r. Such a B exists, as it
is simply the first N − r columns of a change of basis matrix from the standard basis to an
orthonormal basis for N(G). We have

φ(x) = H(Bx+ p(1)),

where p(1) is a fixed vector satisfying Gp(1) =

(
1
c

)
.

Observe that for any x ∈ RN−r, Bx ∈ N(G) so that G(Bx + p(1)) = Gp(1) =

(
1
c

)
and so

Bx + p(1) is feasible. Moreover, B is a bijection from RN−r to the set of feasible solutions.7

Importantly, φ is now unconstrained, and so any saddle point (and so any maximum or
minimum) must satisfy:

∇xφ(x) = 0

Gradient Decomposition Any critical point of H yields a critical point of φ, that is, if
p = p(0) + p(1) is a critical point of H then x = BTp(0) is a critical point of φ. Consider any
critical point p, then we can uniquely decompose the gradient as:

∇pH(p) = g0 + g1 in which g0 ∈ N(G) and g1 ∈ N(G)⊥.

6One can form the Lagrangian for non-linear constraints, but to derive it we need to use fancier math
like the implicit function theorem. We only need linear constraints for our applications.

7For contradiction, suppose p, q are distinct feasible solutions then, p 6= q but BT p = BT q but we can
write p = p(0) +p(1) and q = q(0) +p(1) from the above. However, BT p = BT q implies that BT p(0) = BT q(0).
In turn since B is a bijection on N(G) this implies that p(0) = q(0).
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We claim g0 = B∇φ(BTp) or equivalently BTg = ∇xφ(BTp). From direct calculation,
∇xφ(x) = ∇xH(Bx + p(1)) = BT∇pH(p(0) + p(1)) = BT∇pH(p) = BTg0, where the last
equality is due to g1 ∈ N(G)⊥. A critical point of H satisfying the constraints must not
change along any direction that satisfies the constraints, which is to say that we must have
g0 = 0. Very roughly, one can have the intuition that if p were a maximum (or minimum),
then if g0 were non-zero there would be a way to strictly increase (or decrease) the function
in a neighbor around p–contradicting p being a maximum (minimum).

Lagrangian Since g1 ∈ N(G)⊥ = R(GT ) (see the fundamental theorem of linear algebra),
we can find a η(p) such that g1 = −GTη(p), which motivates the following functional form:

L(p, η(p)) = H(p) + 〈η(p), Gp− c〉

By the definition of η(p), we have:

∇pL(p, η(p)) = g0 + g1 +GTη(p) = g0.

That is, for any critical point p of the original function (which corresponds to g0 = 0) we
can select η(p) so that it is a critical point of L(p, η). Informally, the multipliers combines
the rows of G to cancel g1, the component of the gradient in the direction of the constraints.
This establishes that any critical point of the original constrained function is also a critical
point of the Lagrangian.
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