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1 Introduction

In this set of notes, we will explore the fundamental Bias-Variance tradeoff
in Statistics and Machine Learning under the squared error loss. The con-
cepts of Bias and Variance are slightly different in the contexts of Statistics
vs Machine Learning, though the two are closely related in spirit. We will
first start with the classical notions from Statistics, using Linear Regression
with L2-regularization as a case study. The simplicity of Linear Regression
allows us to derive closed form expressions for the Bias and Variance terms
and appreciate the tradeoff better. Then we will study the notion of Bias and
Variance and their decomposition in the context of Machine Learning (pre-
diction), and see the connections to the classical notions using L2-regularized
Linear Regression as an example.

Throughout this document we will use the following notation. We are
given an i.i.d. data set S = {(x(i), y(i))}ni=1 that was generated from some
data generating probability distribution having some unknown (constant)
parameter θ∗ ∈ Rd. Here x(i) ∈ Rd and y(i) ∈ R. For notational convenience,
let X ∈ Rn×d denote the design matrix, and ~y ∈ Rn the vector of labels. In
the case of regression X is considered given (constant).

2 Bias and Variance in Statistical Inference

We start with the classical setting of statistical inference. Our goal in sta-
tistical inference is to construct an estimator for the unknown parameter θ∗

given the observed data set S.
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Let us indicate our estimator as θ̂n, where n is the size of the dataset
used to fit the model. For example, in the case of Linear Regression, θ̂n =
(XTX)−1XT~y. Note that θ̂n is a random variable even though θ∗ was not.
This is because θ̂n is a (deterministic) function of the noisy data set S, where
noise is typically in the labels ~y. It is worth noting that the randomness in θ̂n
therefore indirectly depends on θ∗, due to this noise. The distribution of θ̂n
is commonly called the Sampling distribution. The Bias and Variance of the
estimator θ̂n are just the (centered) first and second moments of its sampling
distribution.

We call Bias(θ̂n) ≡ E[θ̂n−θ∗] the Bias of the estimator θ̂n. The estimator
θ̂n is called Unbiased if E[θ̂n − θ∗] = 0 (i.e. E[θ̂n] = θ∗) for all values of θ∗.

Similarly, we call Var(θ̂n) ≡ Cov[θ̂n] the Variance of the estimator. Note
that, unlike Bias, the Variance of the estimator does not directly depend on
the true parameter θ∗.

The Bias and Variance of an estimator are not necessarily directly related
(just as how the first and second moment of any distribution are not neces-
sarily related). It is possible to have estimators that have high or low bias
and have either high or low variance. Under the squared error, the Bias and
Variance of an estimator are related as:

MSE(θ̂n) = E
[
‖θ̂n − θ∗‖2

]
= E

[
‖θ̂n − E[θ̂n] + E[θ̂n]− θ∗‖2

]
= E

‖θ̂n − E[θ̂n]‖2 + ‖E[θ̂n]− θ∗‖2︸ ︷︷ ︸
Constant

+2(θ̂n − E[θ̂n]︸ ︷︷ ︸
Zero Mean

)T (E[θ̂n]− θ∗)


= E

[
‖θ̂n − E[θ̂n]‖2

]
+ ‖E[θ̂n]− θ∗‖2

= E
[
tr
[
(θ̂n − E[θ̂n])(θ̂n − E[θ̂n])T

]]
+ ‖E[θ̂n]− θ∗‖2

= tr
[
Var(θ̂n)

]
+ ‖Bias(θ̂n)‖2.

It is quite often the case that techniques employed to reduce Variance results
in an increase in Bias, and vice versa. This phenomenon is called the Bias
Variance Tradeoff. Balancing the two evils (Bias and Variance) in an optimal
way is at the heart of successful model development. Now we will do a case
study of Linear Regression with L2-regularization, where this trade-off can
be easily formalized.
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2.1 Bias Variance Tradeoff in Linear Regression with
L2-regularization

Recall that in Linear Regression we make the assumption y(i) = θ∗Tx(i) +
ε(i) where each ε(i) ∼ N (0, τ 2) i.i.d.. We assume X is given, and hence
constant. For notational simplicity let ~ε ∈ Rn ∼ N (~0, τ 2I) where ~εi = ε(i).
So, ~y = Xθ∗ +~ε. Recall that Linear Regression with L2-regularization (with
regularization parameter λ > 0) minimizes the cost function

J(θ) =
λ

2
‖θ‖22 +

1

2

n∑
i=1

(
y(i) − θTx(i)

)2
,

and enjoys a closed form solution

θ̂n = arg min
θ∈Rd

J(θ)

= arg min
θ∈Rd

[
λ

2
‖θ‖22 +

1

2

n∑
i=1

(
y(i) − θTx(i)

)2]

= arg min
θ∈Rd

[
λ

2
‖θ‖22 +

1

2
‖Xθ − ~y‖22

]
= (XTX + λI)−1XT~y.

Consider the eigendecomposition of the symmetric Positive Semi Definite
(PSD) matrix XTX :

XTX = U

σ
2
1 . . . 0
...

. . .
...

0 . . . σ2
d


︸ ︷︷ ︸

diag(σ2
1 ,...,σ

2
d)

UT ,

where UTU = UUT = I, and {σ2
1, σ

2
2, . . . , σ

2
d} are the eigenvalues, where

some of the σ2
i could be 0. However, even when X (and hence XTX) is not

full rank, (XTX + λI) is always symmetric and Positive Definite (PD) since
we are adding λ > 0 to all the diagonal elements of XTX:

XTX + λI = U

σ
2
1 + λ . . . 0

...
. . .

...
0 . . . σ2

d + λ

UT .
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This implies

(
XTX + λI

)−1
= U


1

σ2
1+λ

. . . 0
...

. . .
...

0 . . . 1
σ2
d+λ

UT .

Therefore θ̂n always exists and is unique. Now we analyze the Bias and
Variance of θ̂n. We start with the expression for the estimator

θ̂n = (XTX + λI)−1XT~y

= (XTX + λI)−1XT (Xθ∗ + ~ε)

=
[(
XTX + λI

)−1
XTX

]
θ∗ +

[(
XTX + λI

)−1
XT
]
~ε

To compute the Bias of this model, we take the expectation of the above and
observe that (remember, X is considered constant in regression):

E[θ̂n] = E
[[(

XTX + λI
)−1

XTX
]
θ∗ +

[(
XTX + λI

)−1
XT
]
~ε
]

=
[(
XTX + λI

)−1
XTX

]
θ∗ +

[(
XTX + λI

)−1
XT
]
E [~ε]

=
[(
XTX + λI

)−1
XTX

]
θ∗ +

[(
XTX + λI

)−1
XT
]
~0

=
[(
XTX + λI

)−1
XTX

]
θ∗

= U


1

σ2
1+λ

. . . 0
...

. . .
...

0 . . . 1
σ2
d+λ

UTXTXθ∗

= U


1

σ2
1+λ

. . . 0
...

. . .
...

0 . . . 1
σ2
d+λ

UTU

σ
2
1 . . . 0
...

. . .
...

0 . . . σ2
d

UT θ∗

= U


1

σ2
1+λ

. . . 0
...

. . .
...

0 . . . 1
σ2
d+λ


σ

2
1 . . . 0
...

. . .
...

0 . . . σ2
d

UT θ∗

= U


σ2
1

σ2
1+λ

. . . 0
...

. . .
...

0 . . .
σ2
d

σ2
d+λ

UT θ∗.
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From the above, we can make a few observations. First, when λ = 0, we
see that E[θ̂n] = θ∗. This implies that standard linear regression estimator
(without regularization) is Unbiased. Second, the above expression is essen-
tially a “shrunk” θ∗ because all the eigenvalues of the matrix are less than
one. In fact, the more regularization we add (i.e. larger λ), the smaller the
eigenvalues will be, and hence the stronger the “shrinkage” towards 0. This
implies that the estimator θ̂n of L2-regularized Linear Regression is Biased
(towards 0 in this case).

Though we paid the price of adding regularization in the form of having a
Biased estimator, we do however gain something in return: reduced variance.
In order to analyze the variance of the estimator θ̂n, first recall the following
property of multivariate Gaussians:

If ~ε ∼ N (~0, τ 2I), then A~ε ∼ N (~0, A(τ 2I)AT ).

This gives us (again, remember X is given, and hence constant in regression):

Cov[θ̂n] = Cov
[(
XTX + λI

)−1
XT~y

]
= Cov

[(
XTX + λI

)−1
XT (Xθ∗ + ~ε)

]
= Cov

(XTX + λI
)−1

XTXθ∗︸ ︷︷ ︸
Constant

+

(XTX + λI
)−1

XT︸ ︷︷ ︸
Constant

~ε


= Cov
[((

XTX + λI
)−1

XT
)
~ε
]

=
[(
XTX + λI

)−1
XT
]

Cov[~ε]
[(
XTX + λI

)−1
XT
]T

(using above property)

=
[(
XTX + λI

)−1
XT
]
τ 2I

[
X
(
XTX + λI

)−1]
= τ 2

(
XTX + λI

)−1 (
XTX

) (
XTX + λI

)−1
= τ 2 U


1

σ2
1+λ

. . . 0
...

. . .
...

0 . . . 1
σ2
d+λ

UT U

σ
2
1 . . . 0
...

. . .
...

0 . . . σ2
d

UT U


1

σ2
1+λ

. . . 0
...

. . .
...

0 . . . 1
σ2
d+λ

UT

= U


τ2σ2

1

(σ2
1+λ)

2 . . . 0
...

. . .
...

0 . . .
τ2σ2

d

(σ2
d+λ)

2

UT .

5



From the above expression we observe that as we add more regularization
(i.e. larger λ), the smaller the spectrum (i.e. all the eigenvalues) of the

covariance of the estimator θ̂n, and hence smaller tr
[
Var(θ̂n)

]
.

Thus we clearly see the Bias Variance trade-off as a function of λ. The
larger the value of λ, the higher the Bias (undesirable) but also smaller the
Variance (desirable) of θ̂n, and vice versa. There exists a sweet spot for λ
that minimizes the sum of the two evils, and finding that sweet spot is better
explained in the context of prediction, which is the next section.

3 Bias and Variance in Prediction

In a prediction (Supervised Machine Learning) setting, our goals are different
from statistical inference. Instead of constructing an estimator θ̂n for the
unknown parameter, we wish to learn a function f that can predict y given x
well (with respect to some loss function). As before, we are given a training
set S = {(x(i), y(i))}ni=1. We make the assumption that y = f(x) + ε, where ε
satisfies E[ε] = 0 and V[ε] = τ 2 (ε is not necessarily Gaussian). Further, we
define (not assume) the “true” f as

f(x′) ≡ E[y|x = x′].

Our task now is to construct a hypothesis f̂n given a fixed size training set S
that mimics f well on all future unseen examples. In other words, f̂n needs
to have good generalization error. We will only consider the case where the
generalization error is the expected squared error loss on an unseen example.

Suppose f̂n is obtained with some (unspecified) training process over S.
As before, note that f̂n is random, and the randomness comes due to the ε(i)’s
embedded in the training set examples. Consider a new unseen example pair
(y∗, x∗) and the corresponding generalization error, where the expectation is
over the randomness in ε embedded in the test example, and in f̂n:

MSE(f̂n) = E
[(
y∗ − f̂n(x∗)

)2]
= E

[(
ε+ f(x∗)− f̂n(x∗)

)2]
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= E
[
ε2
]

+ E
[(
f(x∗)− f̂n(x∗)

)2]
+ E

[
2ε(f(x∗)− f̂n(x∗))

]
= E

[
ε2
]

+ E
[(
f(x∗)− f̂n(x∗)

)2]
+ E [ε]︸︷︷︸

= 0

E
[
2(f(x∗)− f̂n(x∗))

]
(i.i.d. ε)

= E
[
ε2
]

+ E
[(
f(x∗)− f̂n(x∗)

)2]
= E

[
ε2
]

+ E
[
f(x∗)− f̂n(x∗)

]2
+ V

[
f(x∗)− f̂n(x∗)

]
(E[X2] = V[X] + E[X]2)

= τ 2︸︷︷︸
Irreducible error

+E
[
f̂n(x∗)− f(x∗)

]2
︸ ︷︷ ︸

Bias2

+V
[
f̂n(x∗)

]
︸ ︷︷ ︸

Variance

(V[a−X] = V[X])

The above decomposition suggests similarities with the statistical infer-
ence setting. The Bias and Variance are, as before, just the (centered) first
and second moments of f̂n (skipping x∗ in the notation). Bias of f̂n at input
x∗ is defined as E[f̂n−f ] , and Variance is V[f̂n]. Such a clean decomposition
into Bias and Variance terms exists only for the squared error loss. Proposals
have been made for more general losses, though none are widely accepted.

3.1 Prediction with L2-regularized Linear Regression

Now let us tie all this back to the case of L2-regularized Linear Regression.
Let us assume f(x) = θ∗Tx where θ∗ is the true unknown parameter. Now
f̂n(x) = θ̂Tnx where θ̂n is the L2-regularized Linear Regression estimator. We
can see the relation between the Bias and Variance terms of prediction and
of inference as follows:

Bias(f̂n) = E[f̂n(x)− f(x)]

= E[θ̂Tnx− θ∗
Tx]

= E[θ̂n − θ∗]Tx
= Bias(θ̂n)Tx.

(and similarly) Var(f̂n) = xT
[
Var(θ̂n)

]
x.

The irreducible error appears only in the prediction setting, as it is an artifact
of the noise in the test example (there is no such test example in the inference
setting). In other words, the noise in the training data contributes to the
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Variance term, and the noise in the test example manifests itself as the
irreducible error term.

In order to minimize the generalization error, we need to reduce one
or more of the decomposed components. There is nothing we can do to
reduce irreducible error, since it is just noise in the data (i.e., the same x
could have different y values in different examples). Thus we are left with
balancing the Bias and Variance terms. In the case of L2-regularized Linear
Regression, we could consider adjusting the λ value. In the inference setting,
we saw that increasing λ reduces the Variance but increases the Bias. This
tradeoff directly translates into the prediction setting as well, based on the
above relations. Back then it was not clear what might be a good sweet
spot for setting the λ value. However in the prediction setting, there is an
obvious answer: choose λ to be the value that minimizes the squared error
(generalization error) in cross-validation.

4 Bias and Variance in practice

To wrap things up, we can relate the Bias Variance decomposition to the
commonly used terms overfitting and underfitting in the following informal
way:

• Overfitting relates to having a High Variance model or estimator. To
fight overfitting, we need to focus on reducing the Variance of the esti-
mator, such as: increase regularization, obtain larger data set, decrease
number of features, use a smaller model, etc.

• Underfitting relates to having a High Bias model or estimator. To fight
underfitting, we need to focus on reducing the Bias in the estimator,
such as: decrease regularization, use more features, use a larger model,
etc.

The first step in improving generalization error is to characterize which com-
ponent in the decomposition has the highest contribution, and go after that
component. Unfortunately there is no theoretically sound yet tractable way
of calculating the breakdown. However there are certain heuristics that are
extremely useful. Loosely speaking:

• Training error can be treated as the amount of Bias in the model or
estimator. If the model is unable to fit the training data itself well, then
it is likely that the model has High Bias. This is the underfitting regime.
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• Gap between cross-validation error and Training error can be treated as
the Variance of the model or the estimator. If the Training error is low
but the Cross Validation error is high, it is very likely that model has
High Variance. This is the overfitting regime.

We should always analyze the model performance by looking at the train-
ing error and cross-validation error simultaneously. This is the only tractable
(albeit heuristic) way to obtain an estimate of the Bias and Variance compo-
nents. Only then should we take steps that are targeted towards addressing
either Bias or Variance purposefully.

Steps taken to fight overfitting (i.e. fight High Variance) generally do not
necessarily help fight underfitting (i.e. High Bias). For example, it is futile
to spend time and resources in obtaining more data (technique to fight High
Variance) when the training error itself is high (symptom of High Bias).

Similarly steps taken to fight underfitting (i.e. fight High Bias) generally
do not necessarily help fight overfitting (i.e. High Variance). For example,
it is futile to switch to a larger neural network (technique to fight High
Bias) when the gap between cross-validation error and training error is high
(symptom of High Variance).

Many times steps taken to fight one (either High Bias or High Variance)
can end up worsening the other. This is essentially how the Bias Variance
trade-off is encountered in practice.

9


