Convex Optimization
 (for CS229)

Erick Delage, and Ashutosh Saxena

October 20, 2006

1 Convex Sets

Definition: A set $G \subseteq \Re^{n}$ is convex if every pair of point $(x, y) \in G$, the segment between x and y is in A. More formally:

$$
\begin{equation*}
\theta x+(1-\theta) y \in G, \forall x, y \in G \text { and } 0 \leq \theta \leq 1 \tag{1}
\end{equation*}
$$

(a)

(b)

(c)

Figure 1: Examples of sets in 2d. (a) Convex polyotope. (b) Non-convex bean shape set. (c) Convex hull of bean shape set. Images taken from [1].

2 Convex Functions

Figure 2: Convex Function
Definition: $f: \Re^{n} \rightarrow \Re$ is convex if domain of f is a convex set and

$$
\begin{equation*}
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) \tag{2}
\end{equation*}
$$

for all $x, y \in \operatorname{domf}, 0 \leq \theta \leq 1$
A consequence of this definition is that any Local minimum is Global minimum for convex functions. Examples of convex functions:

- affine: $a x+b$ on \Re
- affine: $a^{T} x+b$ on \Re^{n}
- exponential: $e^{a x}$
- powers: x^{α} on $x>0$, for $\alpha \geq 1$ or $\alpha \leq 0$
- negative logarithm: $-\log x$, on $x \geq 0$
- norm: $\|x\|^{2}=\sum_{i=1}^{n} x_{i}$
- quadratic: $x^{2}+b x+c$

3 Conditions for Convexity

3.1 First order condition

For differentiable f, f is convex if and only if $\operatorname{dom} f$ is convex and

$$
\begin{gather*}
f(y) \geq f(x)+\frac{d f(x)}{d x}(y-x) \tag{3}\\
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \tag{4}
\end{gather*}
$$

holds for all $x, y \in \operatorname{dom} f$. This means the tangent (tangent plane for more than one dimensions) at any point is a lower bound for the function.

Figure 3: First Order Condition.

3.2 Second order condition

Hessian is defined as

$$
\begin{equation*}
H_{i, j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}} \tag{5}
\end{equation*}
$$

f is convex if and only if Hessian H is positive semidefinite for all x. One dimensional equivalent says that curvature should be always positive. $f(x)$ is convex if and only if

$$
\begin{equation*}
\frac{\partial^{2} f(x)}{\partial x^{2}} \geq 0 \tag{6}
\end{equation*}
$$

Examples: $f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+x_{2}^{2}$ has Hessian, $H=[2,0 ; 0,2]$, therefore $f\left(x_{1}, x_{2}\right)$ is convex. $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-4 x_{1} x_{2}$ is not convex, because Hessian is not positive semi-definite.

4 Maximizing Convex Functions

An optimization problem is said to be convex if it is equivalent to minimizing a convex objective function subject to the variable lying in a convex set. Equivalently, a Convex Optimization problem can be described in the following form:

$$
\begin{array}{lrr}
\min _{x} & f(x) & x \in \Re^{n} \\
\text { s.t. } & g_{i}(x) \leq 0, & i=1, \ldots, m \\
& A x=b & \text { (7) } \tag{7}
\end{array}
$$

where, $f, g_{1}, \ldots ., g_{m}$ are convex.
The locally optimal point of a convex problem is (globally) optimal. E.g., minimizing with Stochastic Gradient descent or Newton's method, will give converge to optimal point for convex problems.

Examples:

$$
\begin{array}{lr}
\min _{x_{1}, x_{2}} & \left(x_{1}-2\right)^{2}+x_{2}^{2} \\
\text { s.t. } & x_{2} \leq 0
\end{array}
$$

Off the shelf software exist to solve some Convex Optimization problems. For example, if the functions are quadratic, a Quadratic Program (QP) solver maybe used. Similary, there is Linear Program (LP) for linear functions. (quadprog() and linprog() in Matlab)

5 Duality

The original problem can be transferred into another form, which is sometimes easier to solve.

5.1 Lagrangian

Consider the primal problem to be

$$
\begin{array}{ccc}
\min _{w} & f(w) & \\
\text { s.t. } & g_{i}(w) \leq 0, & i=1, \ldots, m \\
& h_{i}(w)=0, & i=1, \ldots, l \tag{9}
\end{array}
$$

Let the optimal value of the problem be p^{*}, at point $w^{*}\left(p^{*}=f\left(w^{*}\right)\right)$. Lagrangian for this problem is defined as

$$
\begin{equation*}
L(w, \alpha, \beta)=f(w)+\sum_{i=1}^{m} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w) \tag{10}
\end{equation*}
$$

where, α_{i} 's and β_{i} 's are the Lagrange multipliers. Lagrangian can be viewed as a weighted sum of objective and constraint functions. Note also that the following problem is equivalent to Problem (9):

$$
\begin{equation*}
\min _{w} \max _{\alpha \geq 0, \beta} L(w, \alpha, \beta) \tag{11}
\end{equation*}
$$

Define the Lagrange dual function as

$$
\begin{equation*}
\theta_{D}(\alpha, \beta)=\min _{w} L(w, \alpha, \beta) \tag{12}
\end{equation*}
$$

5.2 Lower Bounds on Optimal value

$$
\begin{equation*}
\theta_{D}(\alpha, \beta) \leq p^{*} \tag{13}
\end{equation*}
$$

when $\alpha \geq 0$. (Because from Eq. 10, g_{i} are negative).
Now, although θ_{D} is a lower bound, how good is it? We can maximize θ_{D} to get the best lower bound (possibly tight).

5.3 Lagrange Dual problem

To find the tightest bound, we can solve the Lagrange Dual problem:

$$
\begin{array}{lr}
\max _{\alpha, \beta} & \theta_{D}(\alpha, \beta) \\
\text { s.t. } & \alpha \geq 0 \tag{14}
\end{array}
$$

The optimal value of this problem is $d^{*}=\theta_{D}\left(\alpha^{*}, \beta^{*}\right)$. Since, $\theta_{D}(\alpha, \beta) \leq p^{*}$, therefore, $d^{*} \leq p^{*}$, this is referred as weak duality. If the optimization problem respects Slater's condition, we are assured that $d^{*}=p^{*}$ (strong duality). A convex problem respects Slater's condition if there exists a point $w \in \operatorname{domf}$ such that w is strictly feasible : $g_{i}(w)<0$ for all i, and $h_{i}(w)=0$ for all i.

5.4 KKT Conditions

Given that a convex optimization problem conforms with Slater's condition, we can find an optimal 3-tuple $\left(w^{*}, \alpha^{*}, \beta^{*}\right)$ using the Karush-Kuhn-tucker (KKT) conditions:

$$
\begin{align*}
\frac{\partial}{\partial w_{i}} L\left(w^{*}, \alpha^{*}, \beta^{*}\right) & =0, & & i=1, \ldots n \tag{15}\\
\frac{\partial}{\partial \beta_{i}} L\left(\left(w^{*}, \alpha^{*}, \beta^{*}\right)\right. & =0, & & i=1, \ldots l \tag{16}\\
\alpha_{i}^{*} g_{i}\left(w^{*}\right) & =0, & & i=1, \ldots, m \tag{17}\\
g_{i}\left(w^{*}\right) & \leq 0, & i & =1, \ldots, m \tag{18}\\
\alpha^{*} & \geq 0, & i & =1, \ldots, m \tag{19}
\end{align*}
$$

If some $w^{*}, \alpha^{*}, \beta^{*}$ satisfy KKT conditions, then w^{*} is an optimal point for the primal problem and $\left(\alpha^{*}, \beta^{*}\right)$ is optimal for the dual problem.

5.5 Understanding with a example

This section describes a simple case of minimizing $f(w)$ with constraint that $g(w) \leq 0$, where $w \in \Re^{n}$. Now,

$$
L(w, \alpha)=f(w)+\alpha g(w) \quad \text { and } \quad \theta_{D}(\alpha)=\min _{w} L(w, \alpha)=\min _{(u, v) \in G} u+\alpha v,
$$

where $G=\left\{(u, v) \mid u=f(w), v=g(w)\right.$ for some $\left.w \in \Re^{n}\right\}$. Figure 5.5(a) and (b) show two examples of G, with v on x -axis and u on y -axis. Now, $-\alpha$ gives the slope of the line $\theta_{D}(\alpha)=\min _{(u, v) \in G} u+\alpha v$. The Dual problem is to change this line (by changing α) to find the maximum value of $\theta_{D}(\alpha)$. For example $1, d^{*}=p^{*}$. However, for example $2, d^{*}<p^{*}$.

Figure 4: Examples of set G. The darker region in G indicates where $v \leq 0$ and therefore w is feasible. (a) Here, f and g are convex and $d^{*}=p^{*}$. (b) Here, either f or g is non-convex and $d^{*}<p^{*}$.

References

1. Convex Optimization by Boyd \& Vandenberghe (Cambridge University Press 2004). Available Online: http://www.stanford.edu/ boyd/cvxbook, Online notes: http://www.stanford.edu/class/ee364
2. Convex Analysis by R.T. Rockarfeller (1970), Princeton University Press.
