
Convex Optimization
(for CS229)

Erick Delage, and Ashutosh Saxena

October 20, 2006

1 Convex Sets
Definition: A set G ⊆ <n is convex if every pair of point (x, y) ∈ G, the segment between x and y is in A.
More formally:

θx + (1 − θ)y ∈ G , ∀ x, y ∈ G and 0 ≤ θ ≤ 1 . (1)

(a) (b) (c)

Figure 1: Examples of sets in 2d. (a) Convex polyotope. (b) Non-convex bean shape set. (c) Convex hull of
bean shape set. Images taken from [1].

2 Convex Functions

Figure 2: Convex Function

Definition: f : <n → < is convex if domain of f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) (2)
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for all x, y ∈ domf , 0 ≤ θ ≤ 1
A consequence of this definition is that any Local minimum is Global minimum for convex functions.
Examples of convex functions:

• affine: ax + b on <

• affine: aT x + b on <n

• exponential: eax

• powers: xα on x > 0, for α ≥ 1 or α ≤ 0

• negative logarithm: − logx, on x ≥ 0

• norm: ||x||2 =
∑n

i=1 xi

• quadratic: x2 + bx + c

3 Conditions for Convexity
3.1 First order condition
For differentiable f , f is convex if and only if dom f is convex and

f(y) ≥ f(x) +
df(x)

dx
(y − x) (3)

f(y) ≥ f(x) + ∇f(x)T (y − x) (4)

holds for all x, y ∈ domf . This means the tangent (tangent plane for more than one dimensions) at any
point is a lower bound for the function.

Figure 3: First Order Condition.

3.2 Second order condition
Hessian is defined as

Hi,j =
∂2f(x)

∂xi∂xj

(5)
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f is convex if and only if Hessian H is positive semidefinite for all x. One dimensional equivalent says
that curvature should be always positive. f(x) is convex if and only if

∂2f(x)

∂x2
≥ 0 (6)

Examples: f(x1, x2) = (x1 − 1)2 + x2
2 has Hessian, H = [2, 0; 0, 2], therefore f(x1, x2) is convex.

f(x1, x2) = x2
1 + x2

2 − 4x1x2 is not convex, because Hessian is not positive semi-definite.

4 Maximizing Convex Functions
An optimization problem is said to be convex if it is equivalent to minimizing a convex objective function
subject to the variable lying in a convex set. Equivalently, a Convex Optimization problem can be described
in the following form:

min
x

f(x) x ∈ <n

s.t. gi(x) ≤ 0, i = 1, ..., m

Ax = b (7)

where, f, g1, ...., gm are convex.
The locally optimal point of a convex problem is (globally) optimal. E.g., minimizing with Stochastic

Gradient descent or Newton’s method, will give converge to optimal point for convex problems.
Examples:

min
x1,x2

(x1 − 2)2 + x2
2

s.t. x2 ≤ 0 (8)

Off the shelf software exist to solve some Convex Optimization problems. For example, if the functions
are quadratic, a Quadratic Program (QP) solver maybe used. Similary, there is Linear Program (LP) for linear
functions. (quadprog() and linprog() in Matlab)

5 Duality
The original problem can be transferred into another form, which is sometimes easier to solve.

5.1 Lagrangian
Consider the primal problem to be

min
w

f(w)

s.t. gi(w) ≤ 0, i = 1, ..., m

hi(w) = 0, i = 1, ..., l (9)

Let the optimal value of the problem be p∗, at point w∗ (p∗ = f(w∗)). Lagrangian for this problem is
defined as

L(w, α, β) = f(w) +

m∑

i=1

αigi(w) +

l∑

i=1

βihi(w) (10)

3



where, αi’s and βi’s are the Lagrange multipliers. Lagrangian can be viewed as a weighted sum of
objective and constraint functions. Note also that the following problem is equivalent to Problem (9):

min
w

max
α≥0,β

L(w, α, β) . (11)

Define the Lagrange dual function as

θD(α, β) = min
w

L(w, α, β) (12)

5.2 Lower Bounds on Optimal value
θD(α, β) ≤ p∗ (13)

when α ≥ 0. (Because from Eq. 10, gi are negative).
Now, although θD is a lower bound, how good is it? We can maximize θD to get the best lower bound

(possibly tight).

5.3 Lagrange Dual problem
To find the tightest bound, we can solve the Lagrange Dual problem:

max
α,β

θD(α, β)

s.t. α ≥ 0 (14)

The optimal value of this problem is d∗ = θD(α∗, β∗). Since, θD(α, β) ≤ p∗, therefore, d∗ ≤ p∗, this is
referred as weak duality. If the optimization problem respects Slater’s condition, we are assured that d∗ = p∗

(strong duality). A convex problem respects Slater’s condition if there exists a point w ∈ domf such that w

is strictly feasible : gi(w) < 0 for all i, and hi(w) = 0 for all i.

5.4 KKT Conditions
Given that a convex optimization problem conforms with Slater’s condition, we can find an optimal 3-tuple
(w∗, α∗, β∗) using the Karush-Kuhn-tucker (KKT) conditions:

∂

∂wi

L(w∗, α∗, β∗) = 0, i = 1, ...n (15)

∂

∂βi

L((w∗, α∗, β∗) = 0, i = 1, ...l (16)

α∗
i gi(w

∗) = 0, i = 1, ..., m (17)
gi(w

∗) ≤ 0, i = 1, ..., m (18)
α∗ ≥ 0, i = 1, ..., m (19)

If some w∗, α∗, β∗ satisfy KKT conditions, then w∗ is an optimal point for the primal problem and
(α∗, β∗) is optimal for the dual problem.
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5.5 Understanding with a example
This section describes a simple case of minimizing f(w) with constraint that g(w) ≤ 0, where w ∈ <n.
Now,

L(w, α) = f(w) + αg(w) and θD(α) = min
w

L(w, α) = min
(u,v)∈G

u + αv ,

where G = {(u, v)|u = f(w), v = g(w) for some w ∈ <n}. Figure 5.5(a) and (b) show two examples
of G, with v on x-axis and u on y-axis. Now, −α gives the slope of the line θD(α) = min(u,v)∈G u + αv.
The Dual problem is to change this line (by changing α) to find the maximum value of θD(α). For example
1, d∗ = p∗. However, for example 2, d∗ < p∗.

(a) (b)

Figure 4: Examples of set G. The darker region in G indicates where v ≤ 0 and therefore w is feasible. (a)
Here, f and g are convex and d∗ = p∗. (b) Here, either f or g is non-convex and d∗ < p∗.
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