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1 Convex Sets

Definition: A set G C R is convex if every pair of point (z,y) € G, the segment between x and y is in A.
More formally:
x4+ (1-0yeG, VaeyecGand0<H<1. €))
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Figure 1: Examples of sets in 2d. (a) Convex polyotope. (b) Non-convex bean shape set. (c) Convex hull of
bean shape set. Images taken from [1].

2 Convex Functions

f(x)

convex function

Figure 2: Convex Function

Definition: f : " — R is convex if domain of f is a convex set and

fOx+ (1 =0)y) <0f(x)+ (1-0)f(y) 2



forallz,y € domf,0<60 <1
A consequence of this definition is that any Local minimum is Global minimum for convex functions.
Examples of convex functions:

o affine: ax +bon R

e affine: a”z + b on R"

e cxponential: e®”®

e powers: ¥ onzx > 0,foraa > 1lora <0
e negative logarithm: —logx, onz > 0

e nom: [la][2 = X1, ;

e quadratic: 22 4 bx + ¢

3 Conditions for Convexity

3.1 First order condition

For differentiable f, f is convex if and only if dom f is convex and

1@ = @)+ L2 - ®
Fy) = f(2) + V@) (y ) “)

holds for all z,y € domf. This means the tangent (tangent plane for more than one dimensions) at any
point is a lower bound for the function.
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first-order approximation of f is global underestimator

Figure 3: First Order Condition.

3.2 Second order condition

Hessian is defined as

0%f(x)
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f is convex if and only if Hessian H is positive semidefinite for all . One dimensional equivalent says
that curvature should be always positive. f(x) is convex if and only if

& f(x)
Ox?

>0 (6)
Examples: f(x1,22) = (21 — 1)? + 23 has Hessian, H = [2, 0;0, 2], therefore f(z1,x2) is convex.

flxy,x0) = x% + x% — 4x1 x4 is not convex, because Hessian is not positive semi-definite.

4 Maximizing Convex Functions

An optimization problem is said to be convex if it is equivalent to minimizing a convex objective function

subject to the variable lying in a convex set. Equivalently, a Convex Optimization problem can be described
in the following form:

min f(z) xreR"
s.t. gi(z) <0, i=1,...m
Az =b %)
where, f, g1, ...., gm are convex.

The locally optimal point of a convex problem is (globally) optimal. E.g., minimizing with Stochastic
Gradient descent or Newton’s method, will give converge to optimal point for convex problems.
Examples:

min (1 —2)% + 23
T1,T2
s.t. r9 <0 (8)

Off the shelf software exist to solve some Convex Optimization problems. For example, if the functions
are quadratic, a Quadratic Program (QP) solver maybe used. Similary, there is Linear Program (LP) for linear
functions. (quadprog() and linprog() in Matlab)

S Duality

The original problem can be transferred into another form, which is sometimes easier to solve.

5.1 Lagrangian

Consider the primal problem to be
min f(w)
w
s.t. gi(w) <0, i=1,....m
hi(w) =0, i=1,..,1 9)

Let the optimal value of the problem be p*, at point w* (p* = f(w*)). Lagrangian for this problem is
defined as

l

Lw,a,8) = fw) + Y agalw) + 3 fibilw) (10)
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where, a;’s and [3;’s are the Lagrange multipliers. Lagrangian can be viewed as a weighted sum of
objective and constraint functions. Note also that the following problem is equivalent to Problem (9):

min Orlrzl%?(ﬂ L(w,a, 3) . (11
Define the Lagrange dual function as
0p(a, 8) = min L(w, «, 5) (12)

5.2 Lower Bounds on Optimal value
Op(a,B) < p* (13)

when a > 0. (Because from Eq. 10, g; are negative).

Now, although 0p is a lower bound, how good is it? We can maximize € to get the best lower bound
(possibly tight).
5.3 Lagrange Dual problem

To find the tightest bound, we can solve the Lagrange Dual problem:

maﬂx GD(O%ﬁ)
s.t. a>0 (14)

The optimal value of this problem is d* = 0p(a*, 5*). Since, Op(«, 5) < p*, therefore, d* < p*, this is
referred as weak duality. If the optimization problem respects Slater’s condition, we are assured that d* = p*
(strong duality). A convex problem respects Slater’s condition if there exists a point w € dom f such that w
is strictly feasible : g;(w) < 0 for all ¢, and h;(w) = 0 for all 4.

5.4 KKT Conditions

Given that a convex optimization problem conforms with Slater’s condition, we can find an optimal 3-tuple
(w*, o*, 8*) using the Karush-Kuhn-tucker (KKT) conditions:

8 * * *\ .

8wiL(w ,a %) =0, 1=1,..n (15)

0
L((w*,a™,3%) = =1, ... 1

95; (w*,a, %) =0, i=1,..1 (16)

afgi(w*) =0, 1=1,...,m 17

gi(w™) <0, i=1,....,m (18)

a* >0, i=1,..,m (19)

If some w*, o, §* satisfy KKT conditions, then w* is an optimal point for the primal problem and
(a*, 8*) is optimal for the dual problem.



5.5 Understanding with a example

This section describes a simple case of minimizing f(w) with constraint that g(w) < 0, where w € ™.
Now,

L(w,a) = f(w) + ag(w) and Op(a) =min L(w,a) = ( m%nGu +av,
w u,v)€

where G = {(u,v)|u = f(w),v = g(w) for some w € R"}. Figure 5.5(a) and (b) show two examples
of G, with v on x-axis and u on y-axis. Now, —« gives the slope of the line 0 p(a) = min, ,)eq u + av.
The Dual problem is to change this line (by changing «) to find the maximum value of 6, («). For example
1, d* = p*. However, for example 2, d* < p*.
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Figure 4: Examples of set G. The darker region in G indicates where v < 0 and therefore w is feasible. (a)
Here, f and g are convex and d* = p*. (b) Here, either f or g is non-convex and d* < p*.
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