Evaluation Metrics CS229

Anand Avati

Topics

- Why?
- Binary classifiers
 - Rank view, Thresholding
- Metrics
 - Confusion Matrix
 - Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity, F-score
 - Summary metrics: AU-ROC, AU-PRC, Log-loss.
- Choosing Metrics
- Class Imbalance
 - Failure scenarios for each metric
- Multi-class

Why are metrics important?

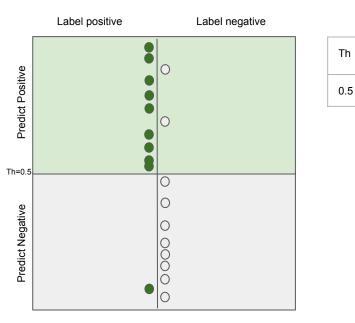
- Training objective (cost function) is only a proxy for real world objective.
- Metrics help capture a business goal into a quantitative target (not all errors are equal).
- Helps organize ML team effort towards that target.
 - Generally in the form of improving that metric on the dev set.
- Useful to quantify the "gap" between:
 - Desired performance and baseline (estimate effort initially).
 - Desired performance and current performance.
 - Measure progress over time (No Free Lunch Theorem).
- Useful for lower level tasks and debugging (like diagnosing bias vs variance).
- Ideally training objective should be the metric, but not always possible. Still, metrics are useful and important for evaluation.

Binary Classification

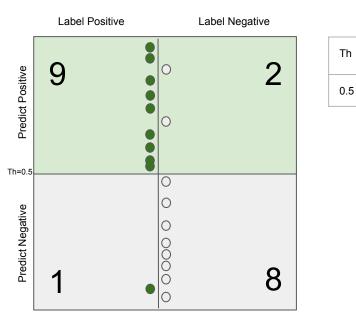
- X is Input
- Y is binary Output (0/1)
- Model is $\hat{y} = h(X)$
- Two types of models
 - Models that output a categorical class directly (K Nearest neighbor, Decision tree)
 - Models that output a real valued score (SVM, Logistic Regression)
 - Score could be margin (SVM), probability (LR, NN)
 - Need to pick a threshold
 - We focus on this type (the other type can be interpreted as an instance)

Score based models

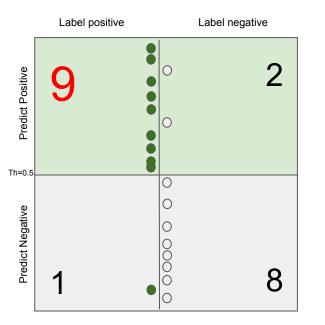
Score based models : Classifier



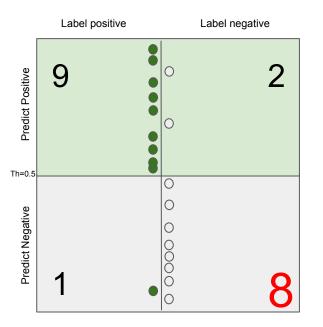
Point metrics: Confusion Matrix



Point metrics: True Positives

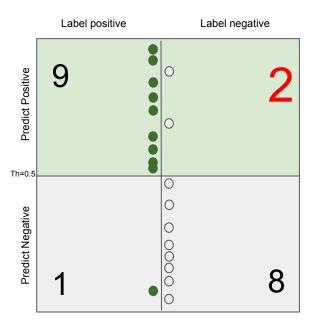


Point metrics: True Negatives



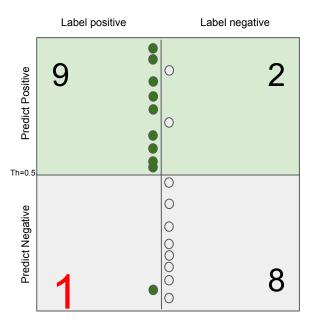
Th	TP	TN
0.5	9	8

Point metrics: False Positives



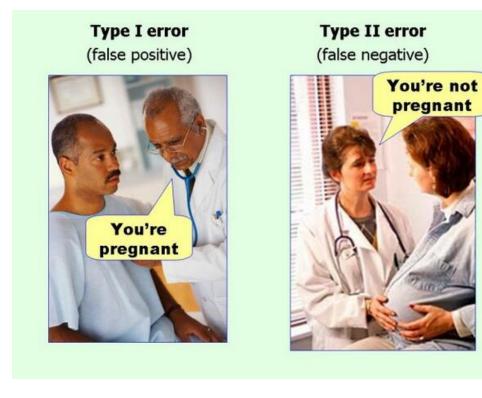
Th	TP	TN	FP
0.5	9	8	2

Point metrics: False Negatives



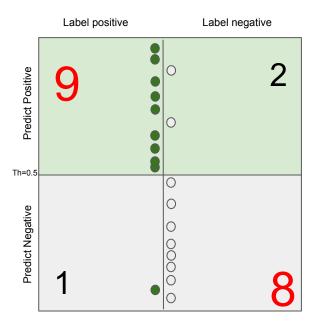
Th	TP	TN	FP	FN
0.5	9	8	2	1

FP and FN also called Type-1 and Type-2 errors



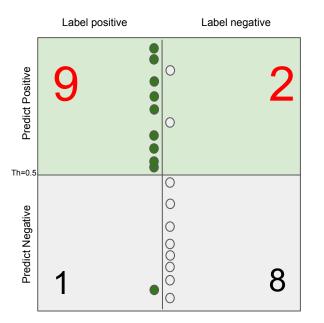
Could not find true source of image to cite

Point metrics: Accuracy



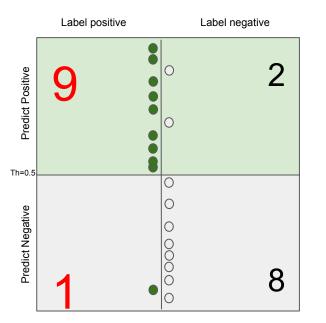
Th	TP	TN	FP	FN	Acc
0.5	9	8	2	1	.85

Point metrics: Precision



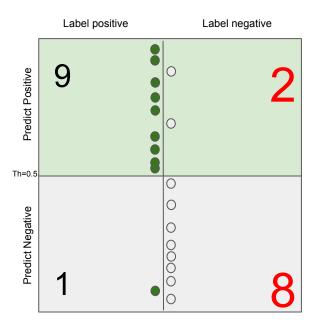
Th	TP	TN	FP	FN	Acc	Pr
0.5	9	8	2	1	.85	.81

Point metrics: Positive Recall (Sensitivity)



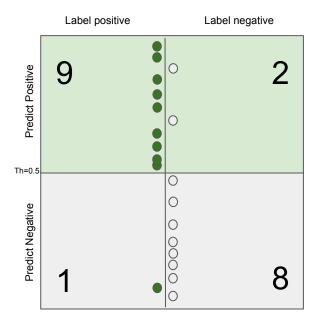
Th	TP	TN	FP	FN	Acc	Pr	Recall
0.5	9	8	2	1	.85	.81	.9

Point metrics: Negative Recall (Specificity)



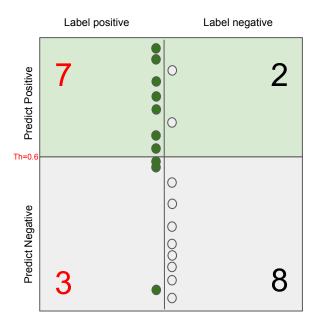
Th	TP	TN	FP	FN	Acc	Pr	Recall	Spec
0.5	9	8	2	1	.85	.81	.9	0.8

Point metrics: F score



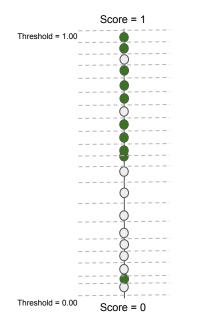
Th	TP	TN	FP	FN	Acc	Pr	Recall	Spec	F1
0.5	9	8	2	1	.85	.81	.9	.8	.857

Point metrics: Changing threshold



Th	TP	TN	FP	FN	Acc	Pr	Recall	Spec	F1
0.6	7	8	2	3	.75	.77	.7	.8	.733

Threshold Scanning

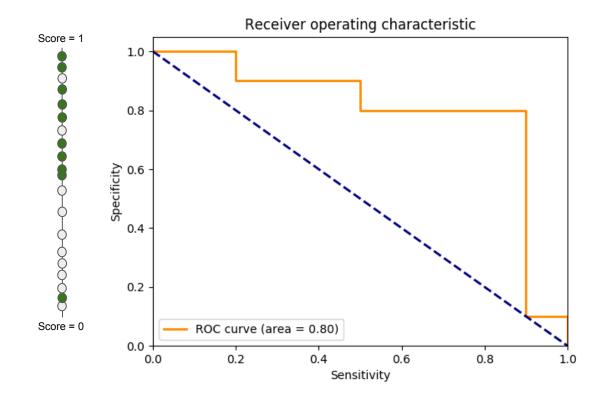


Threshold	TP	ΤN	FP	FN	Accuracy	Precision	Recall	Specificity	F1
1.00	0	10	0	10	0.50	1	0	1	0
0.95	1	10	0	9	0.55	1	0.1	1	0.182
0.90	2	10	0	8	0.60	1	0.2	1	0.333
0.85	2	9	1	8	0.55	0.667	0.2	0.9	0.308
0.80	3	9	1	7	0.60	0.750	0.3	0.9	0.429
0.75	4	9	1	6	0.65	0.800	0.4	0.9	0.533
0.70	5	9	1	5	0.70	0.833	0.5	0.9	0.625
0.65	5	8	2	5	0.65	0.714	0.5	0.8	0.588
0.60	6	8	2	4	0.70	0.750	0.6	0.8	0.667
0.55	7	8	2	3	0.75	0.778	0.7	0.8	0.737
0.50	8	8	2	2	0.80	0.800	0.8	0.8	0.800
0.45	9	8	2	1	0.85	0.818	0.9	0.8	0.857
0.40	9	7	3	1	0.80	0.750	0.9	0.7	0.818
0.35	9	6	4	1	0.75	0.692	0.9	0.6	0.783
0.30	9	5	5	1	0.70	0.643	0.9	0.5	0.750
0.25	9	4	6	1	0.65	0.600	0.9	0.4	0.720
0.20	9	3	7	1	0.60	0.562	0.9	0.3	0.692
0.15	9	2	8	1	0.55	0.529	0.9	0.2	0.667
0.10	9	1	9	1	0.50	0.500	0.9	0.1	0.643
0.05	10	1	9	0	0.55	0.526	1	0.1	0.690
0.00	10	0	10	0	0.50	0.500	1	0	0.667

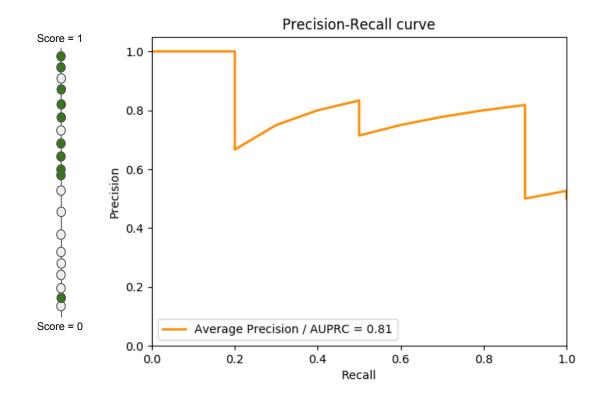
How to summarize the trade-off?

{Precision, Specificity} vs Recall/Sensitivity

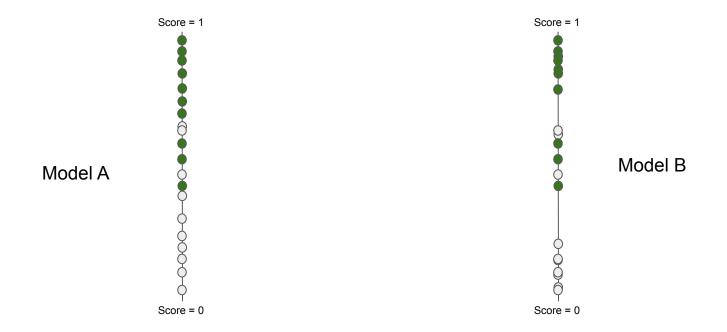
Summary metrics: ROC (rotated version)



Summary metrics: PRC



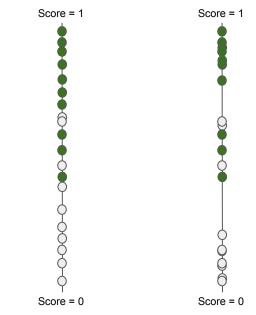
Summary metrics: Log-Loss motivation



Two models scoring the same data set. Is one of them better than the other?

Summary metrics: Log-Loss

- These two model outputs have same ranking, and therefore the same AU-ROC, AU-PRC, accuracy!
- Gain = p(x) imes y + (1 p(x)) imes (1 y)
- Log loss rewards confident correct answers and heavily penalizes confident wrong answers.
- exp(E[log-loss]) is G.M. of gains, in [0,1].
- One perfectly confident wrong prediction is fatal.
- Gaining popularity as an evaluation metric (Kaggle)

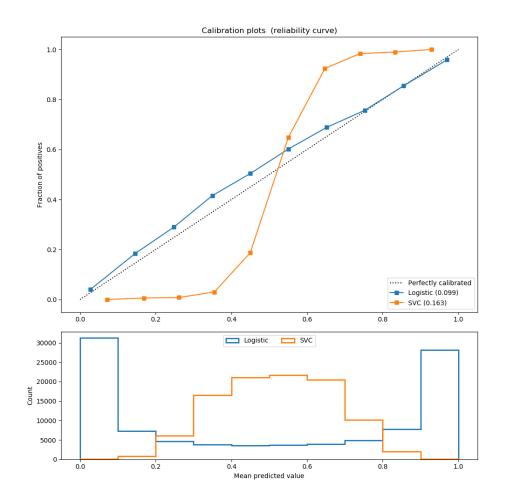


Calibration

Logistic (th=0.5): Precision: 0.872 Recall: 0.851 F1: 0.862 Brier: 0.099

SVC (th=0.5): Precision: 0.872 Recall: 0.852 F1: 0.862 Brier: 0.163

Brier = MSE(p, y)



Unsupervised Learning

- logP(x) is a measure of fit in Probabilistic models (GMM, Factor Analysis)
 - High logP(x) on training set, but low logP(x) on test set is a measure of overfitting
 - Raw value of logP(x) hard to interpret in isolation
- K-means is trickier (because of fixed covariance assumption)

Class Imbalance: Problems

Symptom: Prevalence < 5% (no strict definition)

Metrics: may not be meaningful.

Learning: may not focus on minority class examples at all (majority class can overwhelm logistic regression, to a lesser extent SVM)

Class Imbalance: Metrics (pathological cases)

Accuracy: Blindly predict majority class.

Log-Loss: Majority class can dominate the loss.

AUROC: Easy to keep AUC high by scoring most negatives very low.

AUPRC: Somewhat more robust than AUROC. But other challenges.

- What kind of interpolation? AUCNPR?

In general: Accuracy << AUROC << AUPRC

Multi-class (few remarks)

- Confusion matrix will be NxN (still want heavy diagonals, light off-diagonals)
- Most metrics (except accuracy) generally analysed as multiple 1-vs-many.
- Multiclass variants of AUROC and AUPRC (micro vs macro averaging)
- Class imbalance is common (both in absolute, and relative sense)
- Cost sensitive learning techniques (also helps in Binary Imbalance)
 - Assign \$\$ value for each block in the confusion matrix, and incorporate those into the loss function.

Choosing Metrics

Some common patterns:

- High precision is hard constraint, do best recall (e.g search engine results, grammar correction) -- intolerant to FP. Metric: Recall at Precision=XX%
- High recall is hard constraint, do best precision (e.g medical diag). Intolerant to FN. Metric: Precision at Recall=100%
- Capacity constrained (by K). Metric: Precision in top-K.
- Etc.
- Choose operating threshold based on above criteria.

Thank You!