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1 Introduction

Many situations arise in machine learning where we would like to optimize the value of
some function. That is, given a function f : R

n → R, we want to find x ∈ R
n that minimizes

(or maximizes) f(x). We have already seen several examples of optimization problems in
class: least-squares, logistic regression, and support vector machines can all be framed as
optimization problems.

It turns out that, in the general case, finding the global optimum of a function can be a
very difficult task. However, for a special class of optimization problems known as convex

optimization problems, we can efficiently find the global solution in many cases. Here,
“efficiently” has both practical and theoretical connotations: it means that we can solve
many real-world problems in a reasonable amount of time, and it means that theoretically
we can solve problems in time that depends only polynomially on the problem size.

The goal of these section notes and the accompanying lecture is to give a very brief
overview of the field of convex optimization. Much of the material here (including some
of the figures) is heavily based on the book Convex Optimization [1] by Stephen Boyd and
Lieven Vandenberghe (available for free online), and EE364, a class taught here at Stanford
by Stephen Boyd. If you are interested in pursuing convex optimization further, these are
both excellent resources.

2 Convex Sets

We begin our look at convex optimization with the notion of a convex set .

Definition 2.1 A set C is convex if, for any x, y ∈ C and θ ∈ R with 0 ≤ θ ≤ 1,

θx + (1 − θ)y ∈ C.

Intuitively, this means that if we take any two elements in C, and draw a line segment
between these two elements, then every point on that line segment also belongs to C. Figure
1 shows an example of one convex and one non-convex set. The point θx + (1− θ)y is called
a convex combination of the points x and y.
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Figure 1: Examples of a convex set (a) and a non-convex set (b).

2.1 Examples

• All of R
n. It should be fairly obvious that given any x, y ∈ R

n, θx + (1 − θ)y ∈ R
n.

• The non-negative orthant, R
n
+. The non-negative orthant consists of all vectors in

R
n whose elements are all non-negative: R

n
+ = {x : xi ≥ 0 ∀i = 1, . . . , n}. To show

that this is a convex set, simply note that given any x, y ∈ R
n
+ and 0 ≤ θ ≤ 1,

(θx + (1 − θ)y)i = θxi + (1 − θ)yi ≥ 0 ∀i.

• Norm balls. Let ‖ · ‖ be some norm on R
n (e.g., the Euclidean norm, ‖x‖2 =

√
∑n

i=1 x2
i ). Then the set {x : ‖x‖ ≤ 1} is a convex set. To see this, suppose x, y ∈ R

n,
with ‖x‖ ≤ 1, ‖y‖ ≤ 1, and 0 ≤ θ ≤ 1. Then

‖θx + (1 − θ)y‖ ≤ ‖θx‖ + ‖(1 − θ)y‖ = θ‖x‖ + (1 − θ)‖y‖ ≤ 1

where we used the triangle inequality and the positive homogeneity of norms.

• Affine subspaces and polyhedra. Given a matrix A ∈ R
m×n and a vector b ∈ R

m,
an affine subspace is the set {x ∈ R

n : Ax = b} (note that this could possibly be empty
if b is not in the range of A). Similarly, a polyhedron is the (again, possibly empty)
set {x ∈ R

n : Ax � b}, where ‘�’ here denotes componentwise inequality (i.e., all the
entries of Ax are less than or equal to their corresponding element in b).1 To prove
this, first consider x, y ∈ R

n such that Ax = Ay = b. Then for 0 ≤ θ ≤ 1,

A(θx + (1 − θ)y) = θAx + (1 − θ)Ay = θb + (1 − θ)b = b.

Similarly, for x, y ∈ R
n that satisfy Ax ≤ b and Ay ≤ b and 0 ≤ θ ≤ 1,

A(θx + (1 − θ)y) = θAx + (1 − θ)Ay ≤ θb + (1 − θ)b = b.

1Similarly, for two vectors x, y ∈ R
n, x � y denotes that each element of x is greater than or equal to the

corresponding element in y. Note that sometimes ‘≤’ and ‘≥’ are used in place of ‘�’ and ‘�’; the meaning
must be determined contextually (i.e., both sides of the inequality will be vectors).
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• Intersections of convex sets. Suppose C1, C2, . . . , Ck are convex sets. Then their
intersection

k
⋂

i=1

Ci = {x : x ∈ Ci ∀i = 1, . . . , k}

is also a convex set. To see this, consider x, y ∈
⋂k

i=1 Ci and 0 ≤ θ ≤ 1. Then,

θx + (1 − θ)y ∈ Ci ∀i = 1, . . . , k

by the definition of a convex set. Therefore

θx + (1 − θ)y ∈
k
⋂

i=1

Ci.

Note, however, that the union of convex sets in general will not be convex.

• Positive semidefinite matrices. The set of all symmetric positive semidefinite
matrices, often times called the positive semidefinite cone and denoted S

n
+, is a convex

set (in general, S
n ⊂ R

n×n denotes the set of symmetric n × n matrices). Recall that
a matrix A ∈ R

n×n is symmetric positive semidefinite if and only if A = AT and for
all x ∈ R

n, xT Ax ≥ 0. Now consider two symmetric positive semidefinite matrices
A,B ∈ S

n
+ and 0 ≤ θ ≤ 1. Then for any x ∈ R

n,

xT (θA + (1 − θ)B)x = θxT Ax + (1 − θ)xT Bx ≥ 0.

The same logic can be used to show that the sets of all positive definite, negative
definite, and negative semidefinite matrices are each also convex.

3 Convex Functions

A central element in convex optimization is the notion of a convex function .

Definition 3.1 A function f : R
n → R is convex if its domain (denoted D(f)) is a convex

set, and if, for all x, y ∈ D(f) and θ ∈ R, 0 ≤ θ ≤ 1,

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).

Intuitively, the way to think about this definition is that if we pick any two points on the
graph of a convex function and draw a straight line between then, then the portion of the
function between these two points will lie below this straight line. This situation is pictured
in Figure 2.2

We say a function is strictly convex if Definition 3.1 holds with strict inequality for
x 6= y and 0 < θ < 1. We say that f is concave if −f is convex, and likewise that f is
strictly concave if −f is strictly convex.

2Don’t worry too much about the requirement that the domain of f be a convex set. This is just a
technicality to ensure that f(θx + (1 − θ)y) is actually defined (if D(f) were not convex, then it could be
that f(θx + (1 − θ)y) is undefined even though x, y ∈ D(f)).
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Figure 2: Graph of a convex function. By the definition of convex functions, the line con-
necting two points on the graph must lie above the function.

3.1 First Order Condition for Convexity

Suppose a function f : R
n → R is differentiable (i.e., the gradient3 ∇xf(x) exists at all

points x in the domain of f). Then f is convex if and only if D(f) is a convex set and for
all x, y ∈ D(f),

f(y) ≥ f(x) + ∇xf(x)T (y − x).

The function f(x) + ∇xf(x)T (y − x) is called the first-order approximation to the
function f at the point x. Intuitively, this can be thought of as approximating f with its
tangent line at the point x. The first order condition for convexity says that f is convex if
and only if the tangent line is a global underestimator of the function f . In other words, if
we take our function and draw a tangent line at any point, then every point on this line will
lie below the corresponding point on f .

Similar to the definition of convexity, f will be strictly convex if this holds with strict
inequality, concave if the inequality is reversed, and strictly concave if the reverse inequality
is strict.

Figure 3: Illustration of the first-order condition for convexity.

3Recall that the gradient is defined as ∇xf(x) ∈ R
n, (∇xf(x))i = ∂f(x)

∂xi
. For a review on gradients and

Hessians, see the previous section notes on linear algebra.
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3.2 Second Order Condition for Convexity

Suppose a function f : R
n → R is twice differentiable (i.e., the Hessian4 ∇2

xf(x) is defined
for all points x in the domain of f). Then f is convex if and only if D(f) is a convex set and
its Hessian is positive semidefinite: i.e., for any x ∈ D(f),

∇2
xf(x) � 0.

Here, the notation ‘�’ when used in conjunction with matrices refers to positive semidefi-
niteness, rather than componentwise inequality. 5 In one dimension, this is equivalent to the
condition that the second derivative f ′′(x) always be non-negative (i.e., the function always
has positive non-negative).

Again analogous to both the definition and the first order conditions for convexity, f is
strictly convex if its Hessian is positive definite, concave if the Hessian is negative semidefi-
nite, and strictly concave if the Hessian is negative definite.

3.3 Jensen’s Inequality

Suppose we start with the inequality in the basic definition of a convex function

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) for 0 ≤ θ ≤ 1.

Using induction, this can be fairly easily extended to convex combinations of more than one
point,

f

(

k
∑

i=1

θixi

)

≤
k
∑

i=1

θif(xi) for
k
∑

i=1

θi = 1, θi ≥ 0 ∀i.

In fact, this can also be extended to infinite sums or integrals. In the latter case, the
inequality can be written as

f

(
∫

p(x)xdx

)

≤

∫

p(x)f(x)dx for

∫

p(x)dx = 1, p(x) ≥ 0 ∀x.

Because p(x) integrates to 1, it is common to consider it as a probability density, in which
case the previous equation can be written in terms of expectations,

f(E[x]) ≤ E[f(x)].

This last inequality is known as Jensen’s inequality, and it will come up later in class.6

4Recall the Hessian is defined as ∇2
xf(x) ∈ R

n×n, (∇2
xf(x))ij = ∂2f(x)

∂xi∂xj

5Similarly, for a symmetric matrix X ∈ S
n, X � 0 denotes that X is negative semidefinite. As with vector

inequalities, ‘≤’ and ‘≥’ are sometimes used in place of ‘�’ and ‘�’. Despite their notational similarity to
vector inequalities, these concepts are very different; in particular, X � 0 does not imply that Xij ≥ 0 for
all i and j.

6In fact, all four of these equations are sometimes referred to as Jensen’s inequality, due to the fact that
they are all equivalent. However, for this class we will use the term to refer specifically to the last inequality
presented here.
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3.4 Sublevel Sets

Convex functions give rise to a particularly important type of convex set called an α-sublevel

set . Given a convex function f : R
n → R and a real number α ∈ R, the α-sublevel set is

defined as
{x ∈ D(f) : f(x) ≤ α}.

In other words, the α-sublevel set is the set of all points x such that f(x) ≤ α.
To show that this is a convex set, consider any x, y ∈ D(f) such that f(x) ≤ α and

f(y) ≤ α. Then

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) ≤ θα + (1 − θ)α = α.

3.5 Examples

We begin with a few simple examples of convex functions of one variable, then move on to
multivariate functions.

• Exponential. Let f : R → R, f(x) = eax for any a ∈ R. To show f is convex, we can
simply take the second derivative f ′′(x) = a2eax, which is positive for all x.

• Negative logarithm. Let f : R → R, f(x) = − log x with domain D(f) = R++

(here, R++ denotes the set of strictly positive real numbers, {x : x > 0}). Then
f ′′(x) = 1/x2 > 0 for all x.

• Affine functions. Let f : R
n → R, f(x) = bT x + c for some b ∈ R

n, c ∈ R. In
this case the Hessian, ∇2

xf(x) = 0 for all x. Because the zero matrix is both positive
semidefinite and negative semidefinite, f is both convex and concave. In fact, affine
functions of this form are the only functions that are both convex and concave.

• Quadratic functions. Let f : R
n → R, f(x) = 1

2
xT Ax + bT x + c for a symmetric

matrix A ∈ S
n, b ∈ R

n and c ∈ R. In our previous section notes on linear algebra, we
showed the Hessian for this function is given by

∇2
xf(x) = A.

Therefore, the convexity or non-convexity of f is determined entirely by whether or
not A is positive semidefinite: if A is positive semidefinite then the function is convex
(and analogously for strictly convex, concave, strictly concave); if A is indefinite then
f is neither convex nor concave.

Note that the squared Euclidean norm f(x) = ‖x‖2
2 = xT x is a special case of quadratic

functions where A = I, b = 0, c = 0, so it is therefore a strictly convex function.
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• Norms. Let f : R
n → R be some norm on R

n. Then by the triangle inequality and
positive homogeneity of norms, for x, y ∈ R

n, 0 ≤ θ ≤ 1,

f(θx + (1 − θ)y) ≤ f(θx) + f((1 − θ)y) = θf(x) + (1 − θ)f(y).

This is an example of a convex function where it is not possible to prove convexity
based on the second-order or first-order conditions because norms are not generally
differentiable everywhere (e.g., the 1-norm, ||x||1 =

∑n

i=1 |xi|, is non-differentiable at
all points where any xi is equal to zero).

• Nonnegative weighted sums of convex functions. Let f1, f2, . . . , fk be convex
functions and w1, w2, . . . , wk be nonnegative real numbers. Then

f(x) =
k
∑

i=1

wifi(x)

is a convex function, since

f(θx + (1 − θ)y) =
k
∑

i=1

wifi(θx + (1 − θ)y)

≤

k
∑

i=1

wi(θfi(x) + (1 − θ)fi(y))

= θ
k
∑

i=1

wifi(x) + (1 − θ)
k
∑

i=1

wifi(y)

= θf(x) + (1 − θ)f(x).

4 Convex Optimization Problems

Armed with the definitions of convex functions and sets, we are now equipped to consider
convex optimization problems. Formally, a convex optimization problem in an opti-
mization problem of the form

minimize f(x)
subject to x ∈ C

where f is a convex function, C is a convex set, and x is the optimization variable. However,
since this can be a little bit vague, we often write it as

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where f is a convex function, gi are convex functions, and hi are affine functions, and x is
the optimization variable.
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Is it imporant to note the direction of these inequalities: a convex function gi must be
less than zero. This is because the 0-sublevel set of gi is a convex set, so the feasible region,
which is the intersection of many convex sets, is also convex (recall that affine subspaces are
convex sets as well). If we were to require that gi ≥ 0 for some convex gi, the feasible region
would no longer be a convex set, and the algorithms we apply for solving these problems
would no longer be guaranteed to find the global optimum. Also notice that only affine
functions are allowed to be equality constraints. Intuitively, you can think of this as being
due to the fact that an equality constraint is equivalent to the two inequalities hi ≤ 0 and
hi ≥ 0. However, these will both be valid constraints if and only if hi is both convex and
concave, i.e., hi must be affine.

The optimal value of an optimization problem is denoted p⋆ (or sometimes f ⋆) and is
equal to the minimum possible value of the objective function in the feasible region7

p⋆ = min{f(x) : gi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}.

We allow p⋆ to take on the values +∞ and −∞ when the problem is either infeasible (the
feasible region is empty) or unbounded below (there exists feasible points such that f(x) →
−∞), respectively. We say that x⋆ is an optimal point if f(x⋆) = p⋆. Note that there can
be more than one optimal point, even when the optimal value is finite.

4.1 Global Optimality in Convex Problems

Before stating the result of global optimality in convex problems, let us formally define
the concepts of local optima and global optima. Intuitively, a feasible point is called locally

optimal if there are no “nearby” feasible points that have a lower objective value. Similarly,
a feasible point is called globally optimal if there are no feasible points at all that have a
lower objective value. To formalize this a little bit more, we give the following two definitions.

Definition 4.1 A point x is locally optimal if it is feasible (i.e., it satisfies the constraints
of the optimization problem) and if there exists some R > 0 such that all feasible points z
with ‖x − z‖2 ≤ R, satisfy f(x) ≤ f(z).

Definition 4.2 A point x is globally optimal if it is feasible and for all feasible points z,
f(x) ≤ f(z).

We now come to the crucial element of convex optimization problems, from which they
derive most of their utility. The key idea is that for a convex optimization problem

all locally optimal points are globally optimal .
Let’s give a quick proof of this property by contradiction. Suppose that x is a locally

optimal point which is not globally optimal, i.e., there exists a feasible point y such that

7Math majors might note that the min appearing below should more correctly be an inf. We won’t worry
about such technicalities here, and use min for simplicity.
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f(x) > f(y). By the definition of local optimality, there exist no feasible points z such that
‖x − z‖2 ≤ R and f(z) < f(x). But now suppose we choose the point

z = θy + (1 − θ)x with θ =
R

2‖x − y‖2

.

Then

‖x − z‖2 =

∥

∥

∥

∥

x −

(

R

2‖x − y‖2

y +

(

1 −
R

2‖x − y‖2

)

x

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

R

2‖x − y‖2

(x − y)

∥

∥

∥

∥

2

= R/2 ≤ R.

In addition, by the convexity of f we have

f(z) = f(θy + (1 − θ)x) ≤ θf(y) + (1 − θ)f(x) < f(x).

Furthermore, since the feasible set is a convex set, and since x and y are both feasible
z = θy + (1 − θ) will be feasible as well. Therefore, z is a feasible point, with ‖x − z‖2 < R
and f(z) < f(x). This contradicts our assumption, showing that x cannot be locally optimal.

4.2 Special Cases of Convex Problems

For a variety of reasons, it is oftentimes convenient to consider special cases of the general
convex programming formulation. For these special cases we can often devise extremely
efficient algorithms that can solve very large problems, and because of this you will probably
see these special cases referred to any time people use convex optimization techniques.

• Linear Programming. We say that a convex optimization problem is a linear

program (LP) if both the objective function f and inequality constraints gi are affine
functions. In other words, these problems have the form

minimize cT x + d
subject to Gx � h

Ax = b

where x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, G ∈ R
m×n, h ∈ R

m,
A ∈ R

p×n, b ∈ R
p are defined by the problem, and ‘�’ denotes elementwise inequality.

• Quadratic Programming. We say that a convex optimization problem is a quadratic

program (QP) if the inequality constraints gi are still all affine, but if the objective
function f is a convex quadratic function. In other words, these problems have the
form,

minimize 1
2
xT Px + cT x + d

subject to Gx � h
Ax = b
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where again x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, G ∈ R
m×n, h ∈ R

m,
A ∈ R

p×n, b ∈ R
p are defined by the problem, but we also have P ∈ S

n
+, a symmetric

positive semidefinite matrix.

• Quadratically Constrained Quadratic Programming. We say that a convex
optimization problem is a quadratically constrained quadratic program (QCQP)
if both the objective f and the inequality constraints gi are convex quadratic functions,

minimize 1
2
xT Px + cT x + d

subject to 1
2
xT Qix + rT

i x + si ≤ 0, i = 1, . . . ,m
Ax = b

where, as before, x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, A ∈ R
p×n, b ∈ R

p,
P ∈ S

n
+, but we also have Qi ∈ S

n
+, ri ∈ R

n, si ∈ R, for i = 1, . . . ,m.

• Semidefinite Programming. This last example is more complex than the previous
ones, so don’t worry if it doesn’t make much sense at first. However, semidefinite
programming is becoming more prevalent in many areas of machine learning research,
so you might encounter these at some point, and it is good to have an idea of what
they are. We say that a convex optimization problem is a semidefinite program

(SDP) if it is of the form

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . , p

X � 0

where the symmetric matrix X ∈ S
n is the optimization variable, the symmetric ma-

trices C,A1, . . . , Ap ∈ S
n are defined by the problem, and the constraint X � 0 means

that we are constraining X to be positive semidefinite. This looks a bit different than
the problems we have seen previously, since the optimization variable is now a matrix
instead of a vector. If you are curious as to why such a formulation might be useful,
you should look into a more advanced course or book on convex optimization.

It should be obvious from the definitions that quadratic programs are more general than
linear programs (since a linear program is just a special case of a quadratic program where
P = 0), and likewise that quadratically constrained quadratic programs are more general
than quadratic programs. However, what is not obvious is that semidefinite programs are
in fact more general than all the previous types, that is, any quadratically constrained
quadratic program (and hence any quadratic program or linear program) can be expressed
as a semidefinte program. We won’t discuss this relationship further in this document, but
this might give you just a small idea as to why semidefinite programming could be useful.

4.3 Examples

Now that we’ve covered plenty of the boring math and formalisms behind convex optimiza-
tion, we can finally get to the fun part: using these techniques to solve actual problems.
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We’ve already encountered a few such optimization problems in class, and in nearly every
field, there is a good chance that someone has applied convex optimization to solve some
problem.

• Support Vector Machines (SVM). One of the most prevalent applications of con-
vex optimization methods in machine learning is the support vector machine classifier.
As discussed in class, finding the support vector classifier (in the case with slack vari-
ables) can be formulated as the optimization problem

minimize 1
2
‖w‖2

2 + C
∑m

i=1 ξi

subject to y(i)(wT x(i) + b) ≥ 1 − ξi, i = 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m

with optimization variables w ∈ R
n, ξ ∈ R

m, b ∈ R, and where C ∈ R and x(i), y(i), i =
1, . . . m are defined by the problem. This is an example of a quadratic program, which
we shall show by putting the problem into the form described in the previous section.
In particular, if we define k = m + n + 1, let the optimization variable be

x ∈ R
k ≡





w
ξ
b





and define the matrices

P ∈ R
k×k =





I 0 0
0 0 0
0 0 0



 , c ∈ R
k =





0
C · 1

0



 ,

G ∈ R
2m×k =

[

−diag(y)X −I −y
0 −I 0

]

, h ∈ R
2m =

[

−1
0

]

where I is the identity, 1 is the vector of all ones, and X and y are defined as in class,

X ∈ R
m×n =













x(1)T

x(2)T

...

x(m)T













, y ∈ R
m =











y(1)

y(2)

...
y(m)











.

You should convince yourself that the quadratic program described in the previous
section, when using these matrices defined above, is equivalent to the SVM optimization
problem. In reality, it is fairly easy to see that there the SVM optimization problem
has a quadratic objective and linear constraints, so we typically don’t need to put it
into standard form to “prove” that it is a QP, and we would only do so if we are using
an off-the-shelf solver that requires the input to be in standard form.
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• Constrained least squares. In class we have also considered the least squares prob-
lem, where we want to minimize ‖Ax − b‖2

2 for some matrix A ∈ R
m×n and b ∈ R

m.
As we saw, this particular problem can be solved analytically via the normal equa-
tions. However, suppose that we also want to constrain the entries in the solution x
to lie within some predefined ranges. In other words, suppose we wanted to solve the
optimization problem,

minimize 1
2
‖Ax − b‖2

2

subject to l � x � u

with optimization variable x and problem data A ∈ R
m×n, b ∈ R

m, l ∈ R
n, and u ∈ R

n.
This might seem like a simple additional constraint, but it turns out that there will
no longer be an analytical solution. However, you should convince yourself that this
optimization problem is a quadratic program, with matrices defined by

P ∈ R
n×n =

1

2
AT A, c ∈ R

n = −bT A, d ∈ R =
1

2
bT b,

G ∈ R
2n×2n =

[

−I 0
0 I

]

, h ∈ R
2n =

[

−l
u

]

.

• Maximum Likelihood for Logistic Regression. For homework one, you were
required to show that the log-likelihood of the data in a logistic model was concave.
The log likehood under such a model is

ℓ(θ) =
n
∑

i=1

{

y(i) ln g(θT x(i)) + (1 − y(i)) ln(1 − g(θT x(i)))
}

where g(z) denotes the logistic function g(z) = 1/(1 + e−z). Finding the maximum
likelihood estimate is then a task of maximizing the log-likelihood (or equivalently,
minimizing the negative log-likelihood, a convex function), i.e.,

minimize −ℓ(θ)

with optimization variable θ ∈ R
n and no constraints.

Unlike the previous two examples, it is not so easy to put this problem into a “standard”
form optimization problem. Nevertheless, you have seen on the homework that the fact
that ℓ is a concave function means that you can very efficiently find the global solution
using an algorithm such as Newton’s method.

4.4 Implementation: Linear SVM using CVX

Many convex optimization problems can be solved by several off-the-shelf software packages
including CVX, Sedumi, CPLEX, MOSEK, etc. Thus, in many cases, once you identify the
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convex optimization problem, you can solve it without worrying about how to implement
the algorithm yourself. This is particularly useful for a rapid prototyping.8

Among these software packages, we introduce CVX [2] as an example. CVX is a free
MATLAB-based software package for solving generic convex optimzation problems; it can
solve a wide variety of convex optimization problems such as LP, QP, QCQP, SDP, etc.
As an illustration, we conclude this section by implementing a linear SVM classifier for the
binary classification problem using the data given in the Problem Set #1. For more general
setting using other non-linear kernels, the dual formulation can be solved using CVX as well.

% load data

load q1x.dat

load q1y.dat

% define variables

X = q1x;

y = 2*(q1y-0.5);

C = 1;

m = size(q1x,1);

n = size(q1x,2);

% train svm using cvx

cvx_begin

variables w(n) b xi(m)

minimize 1/2*sum(w.*w) + C*sum(xi)

y.*(X*w + b) >= 1 - xi;

xi >= 0;

cvx_end

% visualize

xp = linspace(min(X(:,1)), max(X(:,1)), 100);

yp = - (w(1)*xp + b)/w(2);

yp1 = - (w(1)*xp + b - 1)/w(2); % margin boundary for support vectors for y=1

yp0 = - (w(1)*xp + b + 1)/w(2); % margin boundary for support vectors for y=0

idx0 = find(q1y==0);

idx1 = find(q1y==1);

plot(q1x(idx0, 1), q1x(idx0, 2), ’rx’); hold on

8However, depending on the optimization problem, these off-the-shelf convex optimization solvers can be
much slower compared to the best possible implementation; therefore, sometimes you may have to use more
customized solvers or implement your own.
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Figure 4: Decision boundary for a linear SVM classifier with C = 1.

plot(q1x(idx1, 1), q1x(idx1, 2), ’go’);

plot(xp, yp, ’-b’, xp, yp1, ’--g’, xp, yp0, ’--r’);

hold off

title(sprintf(’decision boundary for a linear SVM classifier with C=%g’, C));
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