Predicting Bazel Build Times Using Machine Learning

Muhammad Umar Nadeem
Stanford University
munadeem(@stanford.edu

1. Abstract

Similar to other tools like Make, Ant, Gradle,
Buck, Pants and Maven, Bazel 1s a tool that
automates software builds and tests. To be able to
support developer’s daily activities, the build
service system runs millions of builds per day. It
is a known issue in Bazel that a build with many
targets could exceed its execution deadline. This
is problematic because it reduces the developer’s
productivity and maintains high energy and
resource consumption. In this paper, we outline a
linear regression algorithm with feature crossing
that predicts the CPU-time of a Bazel build. This
model will allow developers to design code for
efficient use of resources in advance of executing
the build.

2. Introduction

Bazel, initially designed to fit the way software is
developed at Google, is an open source tool that
automates software builds and tests. It has the
following key features: multi-language support,
high-level build language, multi-platform
support, reproducibility, and scalability. These
key features directly and positively correlate with
the tool’s growing customer base.

In light of expanding use of Bazel, it has become
a known issue that a build with many targets
could exceed its execution deadline. This
translates to the fact that the build system often
times out without fully executing on deeply
structured codebases. This is problematic because
it reduces a developer’s productivity by requiring
recurring redevelopment after time wasted
waiting for the build to execute. This is also
problematic because it unnecessarily uses a large
amount of computing resources. Through a lens
of environmentalism, the scale of the technology

Sarah Raza
Stanford University
sraza007 @stanford.edu

industry means that wasted energy on tools as
fundamental to all code as build-systems,
especially one with a growing user base, has
lasting, large-scale negative impact.

In this paper, we discuss the development of an
algorithm that, when trained on the commits
made to the codebase of a particular company or
project using Bazel as build-system, can predict
the amount of CPU time required for the
codebase to build after a new commit. More
specifically, the inputs to our algorithm are the
following: the most common prefix of the file
paths of the files changed in a specific commit to
a codebase, and the most common file type
changed in that same commit to a codebase. We
then use a linear regression model with feature
crossing to output the predicted CPU-time
required to build the code after that commit. This
model will allow developers to predict Bazel
build times and thus account for inefficiencies in
advance of executing builds.

3. Related Work

The most relevant paper in this field is “Smart
Build Targets Batching Service at Google” by
Wang et al. This paper is similar to our work in
that it also focuses on using a Bazel build system
and linear regression to predict metrics that will
ultimately help optimize builds. It differs in its
focus on creating a batching algorithm that alters
the way Bazel itself works rather than predicting
the CPU-time of the build. Another paper that
discusses Bazel build-systems is “Using Remote
Cache Service for Bazel” by Lam et al. While this
paper also focuses on providing a solution to
reduce lengthy builds, it proposes the
development of a remote cache to boost
performance rather than predicting CPU time.
Unfortunately, this solution is not universal

because it can be expensive and time consuming
to create a remote execution farm at the scale
necessary to cause a tangible impact.

The paper "Fast distributed compilation and
testing of large C++ projects" by Matev et al. also
focuses on optimizing build time, but more
specifically in the context of C++ projects.
Therefore, this paper was limited in its ability to
be useful for companies with codebases in any
other language.

The paper "Scalable build service system with
smart scheduling service” by Wang et al. also
focuses on optimizing build time. This paper
offered interesting insights into how a company
can be more efficient, but only for large scale
firms that could afford the time and resources
required to implement it.

Finally, it is important to highlight an additional
paper by Harmon et al. titled "A retargetable
technique for predicting execution time of code
segments." This paper focused specifically on
predicting build metrics, and it was similar to the
first two papers because it presented a technique
that predicts point-to-point execution times on
code segments. It is similar to this paper because
it is focused on predicting execution time,
however it differs in the fact that it only predicts
execution time for segments of code. Also, the
paper differs because it does not use linear
regression as its machine learning algorithm of
choice. Instead, the researchers develop their own
method called micro-analysis, a method that
utilizes machine-description rules.

4. Dataset and Features

Our dataset consisted of information on 500
different builds in the open source
bazelbuild/bazel project hosted on Github.
Because each new commit to the codebase
requires the project to rebuild, we considered one

commit equivalent to one build. In order to save
the relevant input and output information, we had
to locally build each commit and thus computing

resources limited us to have 300 examples of
training data, 100 examples of validation data,
and 100 examples of testing data.

4.1 Raw Input Data

Our first step to obtaining the data was saving it
from the commits. As our input data, we recorded
the prefix of the file paths for the
files changed in each commit and
the types of the files changed. To
obtain this data, we created a
python script that ran a “git diff”
command 500 times - once for each
commit - and recorded the
information into a .csv file. The

different options for prefix and file

type are shown to the right:

While we considered using different data as our
input, such as the number of files changed, we
ultimately concluded file prefixes and type were
the best predictors. To better understand why we
chose file prefixes, consider a C++ project in
which you change one header that is included in
hundreds of files in the code base. In contrast,
consider that instead you change ten files that are
not included anywhere else in the code base. The
former will take a lot longer to build than the
latter. In general, which folder a file is located in
tends to be an indicator of how important it is to
the code base: a file in third party is likely to be
a dependency used in one other file g

where as a file in src/main is likely —[——-

to be essential to the functionality FERmEIs

of the codebase and therefore used EEEE

much more frequently. Thus, we K
settled on using files changed as SR

our input. We additionally use file srcll ";ai”
tools

type (shown to the right) because

tools/

lower level languages such as C++
tend to compile faster than

tools/

languages such as Python. This intuition for what
input features was backed up by the paper titled
“Smart Build Targets Batching Service at
Google” by Wang et al.

4.2 Raw Output Data

Due to the implementation of a supervised
learning algorithm to predict CPU-time, it was
important to record the CPU-time for each
commit. To do this, the following command was
used to save the Build Event Protocol (BEP) for
one commit: “bazel build //src:bazel-dev --
build event json file=path to save file”. The
BEP is a .json file containing a variety of
information about the build. Within the
buildMetric field of the BEP, there 1s a field
called timingMetric that includes
the CPUTime in milliseconds. A
python script was used to save the
BEP for each commit and then
traversed each of the .json files to
fill a .csv file with the CPUTime for
each commit. An example of some
of the output data is shown to the
right:

4.2 Preprocessing Data

The next step in preparing the data was
converting it into an information type compatible
with linear regression. This was accomplished
through Bucketization.

To train the linear regression model, the string
input features were converted into discrete,
integer features. This was done using tensor flow
CategoricalColumns with In-memory
vocabulary. The vocabulary list for the prefixes
was: "bazelci/", "examples/", "scripts/", "site/",
"src/conditions", '"src/java tools", "src/main",
"src/test", "src/tools", "third party/", "tools/".
The vocabulary list for the types was: "JAVA",
"C/C++", "Starlark", "python",
"HTML/CSS/JS.”

5. Methods

5.1 Linear Regression

In machine learning, regression analysis is a set
of statistical processes for estimating the
relationships between a dependent variable
(denoted as y) and one or more independent
variables (denoted as x). It tries to find the line
that most closely fits the data according to a
specific mathematical criterion. For example, the
method of ordinary least squares computes the
unique line (or hyperplane) that minimizes the
sum of squared distances between the true data
and that line (or hyperplane).

Given a set of data set {y,x,,...x,}"., of n
statistical units. A simple linear regression
model has the following form:
Y =By + Byt o B, + 8 =5 P e i=Lan
where T denotes the transpose, so that x7Bis
the inner product between vectors x, and .

Fitting a linear model to a given data set
usually requires estimating the regression
coefficients B such that the error term
g, = y, — x"p is minimized across all n samples.
For example, it is common to use the sum of

squared errors 3", €%, as the quality of the

fit.

It is important to note that linear models can be
efficiently trained using stochastic gradient
descent.

5.2 Feature Crossing

A feature cross is a synthetic feature formed by
multiplying (crossing) two or more features.
Crossing combinations of features can provide
predictive abilities beyond what those features
can provide individually. As a consequence,
feature crosses can help us learn non-linear
functions using linear regression. A well-known
example is that the XOR function f(x,y) where
x,¥,f(x,y) € {0,1} is not linearly separable and it
cannot be written as f (x, y) = ax + By + y where

o, B and y are real numbers. However, the XOR
function can be written as f (x, y) = x +y — 2xy,
where the xy term is a feature cross for x and y.

In practice, machine learning models seldom
cross continuous features. However, machine
learning models do frequently cross one-hot
feature vectors for better results. For example,
suppose we bin latitude and longitude,
producing separate one-hot five-element feature
vectors, e.g. [0, 0, 0, 1, 0]. Creating a feature
cross of these two features results in a 25-
element one-hot vector (24 zeroes and 1 one).
The single 1 in the cross identifies a particular
conjunction of latitude and longitude. By feature
crossing these two one-hot vectors, the model
can form different conjunctions, which will
ultimately produce far better results compared to
a linear combination of individual features.

5.2 Linear Regression and Feature

Crossing in Context

After preprocessing our data and bucketing the
file fragments so that they represent numerical
data, we ran the linear regression model as
described above, using stochastic gradient
descent as our optimizer. To further increase
accuracy, we crossed the two inputs (prefix and
type) and retrained the model.

6. Experiments, Results, &

Discussion

6.1 Experiments

In our experiments, we focused on tuning two
hyperparameters: learning rate and batch size.
We did this using grid search cross-validation
with 3 folds. In the end, we found that the optimal
learning rate was .01 (the default value given by
SGD) and the associated batch size was 16. Our
conclusion was backed up by existing research
looking at the relationship between batch size and
learning rate. Specifically, in the paper “Cyclical
Learning Rates for Training Neural Networks,”

Smith et al. found that according to their research
the minimum amount of loss for a learning rate of
.01 occurred when the batch size was 16.

The primary metric for accuracy and precision
was root mean squared error (RMSE). This is a
measure of the standard deviation of the
residuals, where residuals are a measure of how
far from the regression line the data points are.
The lower the RMSE, the better fit the linear
model of regression has. The following is the
RMSE equation, where f = forecasts (expected
values or unknown results), o = observed values
(known results), and the bar above the squared
differences is the mean.

RMSE = y|(f - 0)®

We used RMSE to help us understand not only
how effective our model is, but also whether our
linear regression was more successful with or
without feature crosses.

6.1 Results

As shown below, the root means squared error
was lower when the model was run with feature
crosses. Quantitatively, we observed this because
RMSE was numerically lower with feature
crosses. Qualitatively, we observed this because
the training and validation lines looked more
similar when feature crosses were used.

RMSE without Featurization

RMSE for linear regression period O1: | 6890.14
H 3 : period 02: 5997.34
w1‘Fh<‘)ut featurization for the P eriod 03 | 5482.53
training data (table to the period 04: | 544271
: . period 05: 5588.51
rlghF). Average: 5735.84 period 06 | 550691
milliseconds. period 07: | 5842.11

period 08: 5442.39
period 09: 5429.90

RMSE with Featurization

period 01: | 5456.73 RMSE for linear regression

period 02: 5473.42

period 03: | 5556.61 with featurization for the

period04: | 5503.59 training data (table to the left).

period 05: 6430.74

period 06: 5652.71 Average: 5628.09

period 07: | 5495.58 milliseconds.

period 08: 5474.57

period 09: 5608.88

RMSE for linear regression without featurization for

the training and validation data:

Root Mean Squared Error vs. Periods
10000

—— training
validation

8000

6000
'_/—'\/\\

4000

2000

0
0 2 - 6 8
Periods

RMSE for linear regression without featurization for
the testing data:

Root Mean Squared Error vs. Periods
10000

— testing

8000

6000

4000

2000

o 2 4 6 8
Periods

RMSE for linear regression with featurization for the
training and validation data:

Root Mean Squared Error vs. Periods
10000

—— training
—— validation

8000

6000 /\,
/\/\— e ————

4000

2000

0

0 2 4 6 8
Periods

RMSE for linear regression with featurization for the
testing data:

Root Mean Squared Error vs. Periods
10000

— testing

8000

6000

4000

2000

[2 4 6 8
Periods

6.2 Discussion

There are two major signs of overfitting. The first
is if the performance of the model on the training
dataset is significantly better than the
performance on the validation dataset. The
second is if the model’s performance on the
validation dataset improves to a point and then
begins to get worse. In our case, neither of these
occur so we do not have overfitting.

Additionally, linear regression was more
successful (there was a lower average RMSE),
albeit slightly more successful, with feature
crosses. This makes sense because feature
crosses can represent a non-linear relationship
with linear regression and the relationship
between file prefix + type and CPU time is not
necessarily linear.

7. Conclusion

This paper outlined a linear regression algorithm
with feature crossing that is able to predict the
CPU-time of a Bazel build. This model will allow
developers to design code for efficient use of
resources in advance of executing the build.

That being said, there is room for improvement.
Given that most of our CPU times were in the
tens of thousands of milliseconds, our root mean
squared error being in the 5000-6000
millisecond range is acceptable but less than
ideal. To improve our results, we would have to
collect more data. As of right now, we are using
500 commits worth of information to represent
the build metrics for almost 30,000 commits.
Since we simply selected the 500 most recent
commits, it is unlikely that we have
representative data of the entire build system.
Similarly, the granularity of our collected data
was limited to most common prefixes and file
types by computing power. Thus, given more
time and resources in the future, we have means
to train a more successful model.

8. Acknowledgements

We would like to thank Professor Moses
Charikar, Professor Chris Ré, Head TA Ian
Tullis, and the rest of the CS 229 staff for their
support and guidance.

9. Contributions

Sarah Raza established rapport with our project
mentors at EngFlow, the startup we partnered
with, and developed a high-level understanding
of the project motivations. She wrote the python
scripts for collecting data from open source Bazel
commits. She also contributed heavily to the
development of the machine learning model
through implementation of feature bucketization
and crossing.

Muhammad Umar Nadeem worked to parse the
dense information regarding build systems and
their build metrics into the target dataset for the
machine learning algorithm. He also contributed
heavily to the development of the machine
learning model through implementation of data
sorting, the training model, and the testing
model.

Both contributed equally to the authorship of this
paper.

10. References

D. C. Montgomery, E. A. Peck, and G. G.
Vining. “Introduction to linear regression
analysis.” 2012.

Harmon, Marion G., Theodore P. Baker, and
David B. Whalley. "A retargetable technique for
predicting execution time of code segments."
Real-Time Systems 7.2 (1994): 159-182.

Lam, Alpha. "Using Remote Cache Service for
Bazel: Save time by sharing and reusing build and
test output." Queue 16.4 (2018): 31-43.

Matev, Rosen. "Fast distributed compilation
and testing of large C++ projects." EPJ Web of
Conferences. Vol. 245. EDP Sciences, 2020.

Smith, Leslie N. “Cyclical Learning Rates for
Training Neural Networks.” 2017 IEEE Winter
Conference on Applications of Computer Vision
(WACYV) (2017): 464-472.

Wang, Kaiyuan, et al. "Scalable build service
system with smart scheduling service."
Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing
and Analysis. 2020.

Wang, Kaiyuan, et al. "Smart Build Targets
Batching Service at Google." 2021 IEEE/ACM
43rd International Conference on Software
Engineering: Software Engineering in Practice
(ICSE-SEIP). 1IEEE, 2021.

11. Code

The code for this project can be found at:
https://github.com/umar-nadeem/CS229-Final-

Project

