Mobile Money SMS Fraud Detection

Stanford CS 229 Final Project Report

Josh Nkoy x Arafat Mohammed
Department of Computer Science
Stanford University
joshnkoy@stanford.edu x arafatm@stanford.edu

Abstract

In recent times, the growing decentralization and ubiquitization of financial technol-
ogy has driven economic growth in emerging economies, especially in sub-Saharan
Africa. Key to this spread of greater financial freedom and expediency in this
region has been the use of mobile money transfer (MMT) services, which allow
greater speed, volume, and anonymity of transactions on an individual basis than
traditional money wires. However, with such power comes much possibility for
fraud, especially preying on vulnerable populations using one or more text mes-
sages preceding a call. In this project, we present the Machine learning model best
suited for MMT fraud detection in text messages.

1 Introduction

With more than 2 billion persons and 200 million small businesses in emerging economies worldwide
lacking access to formal savings and checking accounts — but 68% of that population having access
to a mobile phone — MMT has nearly closed the gap of easy transactional capability with nearly
1.1 billion MMT accounts operational worldwide. Of that staggering amount, the African continent
is home to over half of those accounts, to such an extent that MMT has over 50 times the reach of
banking services. With wider adoption of digitalized finance, emerging economies in Africa and
elsewhere could collectively add 6% more GDP — that is, $3.7 trillion. It is clear that MMT has and
will continue to drive the way people in emerging economies circulate their money.

However, considering the relative ease of MMT compared to banking, MMT has also been exploited
for not-so-good purposes; all things considered, it is far easier (without proper regulation) for people
to launder money or defraud vulnerable people. A 2020 Interpol report lists various types of new
fraud that are possible in MMT systems — email-like advance fee scams, fake charity drives, using
fake employee details, and most importantly for our purposes SMS scams. Fortunately, we can
wield the power of machine learning to try and make predictive systems that can pick up on such
fraud on the fly, keeping more money legitimately in the MMT flow for the people who need it most.
Given the large corpus of research on classification of text, we hope to uncover which of a machine
learning methods can robustly identify fraudulent intent within SM'S messages, measuring metrics
for accuracy, precision, and other dynamics along the way.

2 Related Work

There has been ample work on applying machine learning algorithms, specifically ones most useful
for spam-ham classification, to fraud detection in the mobile money transfer sphere. One of the most
comprehensive comparisons of classification techniques for fraud is in a paper from Botchey, Qin, and
Hughes-Lartey [4]; this work compared the efficiency of support vector machines, gradient-boosted
decision trees, and naive Bayes algorithms in classification, with added model construction tactics
over the dataset (such as oversampling and undersampling) to overcome the inherent imbalance
in spam-ham data — where well over 90% of the data are spam instances. Another project from
Magagula [5] compared two plain ReLU neural network classifiers over similar datasets. Yet another

Stanford CS 229: Machine Learning

project from Bandyopadhyay and Dutta [6] analyzed the efficacy of recurrent neural networks in
classifying fraudulent messages, achieving an accuracy of 99% (and F1 score of 0.99) in the process.
Additionally, Adedoyin [7,8] curated a fraud detection system model consisting of data preprocessing,
then clustering, then feature extraction, and finally case-based reasoning classification achieved by
k-nearest neighbor variants. Our work aims to be a fairly wider survey of multiple techniques that are
covered in these studies, with more emphasis on feature extraction and the effect it has on efficiency
over a plethora of models, be it probabilistic, plain neural network, or deep learning models.

3 Dataset

Due to the intrinsically private nature of financial transactions, gathering real data especially in
the emerging mobile money transactions domain can be hard and no existing datasets was found.
Consequently, about 50 real mobile money SMS messages were manually gathered and tagged as
either ham (legitimate) or spam (fraud). A typical example of a MMT fraud/spam message is show
in Table 1 below. This data was combined with two SMS Spam Collection Datasets sourced from
Kaggle with each having about 5000 messages, in English, each and tagged according being ham or
spam. A total of about 11,000 messages was used for this project with 80 percent for training and 20
percent for testing. A distribution of the messages is shown below in figure 1.

Table 1: Sample of Real Mobile Money related SMS message

Fraud (spam) Legitimate (ham)

Dear Customer, our Vodafone Cash services
have been restored. Thank you for your
patience

Pay your Water, StarTimes, DStv, and GOtv
bills via Vodafone Cash. Simply call 054098
8417 and Make Payments.

Send money for Free to ALL NETWORKS via

Vodafone Cash. Dial *110# and select
option 1 to transfer money for free.

Distribution of message sizes

Number of ham and spam messages
10000 1000

8000

count

Figure 1.

4000

2000

o
label 13 20 % C3 0
Message Length (in characters)

4 Features

The purpose of extraction is to represent the messages in a meaningful number space in order to be
used by the Machine Learning Models. Four feature extraction methods were employed namely:
Term Frequency-Inverse Dense Frequency(TF— IDF), CountVectorizer, Tokenizer, and Transformer
Based feature extractor. The last two were used for the deep learning models presented in this paper.
Before extracting the features, the messages are normalized by removing punctuation and all stop
words and converted to lower case.

4.1 TF-IDF

TF-IDF represents the collection of messages by assigning a score for each word in the using the
formula below:
_ fe.d

Term frequency: tf(¢,d) = ;
Et’ed fr.a

Inverse document frequency: tfidf (¢, d, D) = tf(¢t, d) - idf(¢, D)

idf(¢t, D) = log —l{degted}\

t: represent the specific term or word, d: specific document or sentence, N: total number of documents
in the corpus.

4.2 CountVectorizer

The CountVectorizer represents the collection of sentences in a matrix space of token/word counts.

4.3 Tokenizer

A keras Tokenizer transforms each word into the collection of sentences to a sequence of integers
using word indexing.

4.4 DistillBert Based feature extractor

A pretrained transformer based model, DistilBert, was used to obtain an embedding feature vector
from the collecction of messages.

5 Methods

Our project benchmarked learning over our processed data with the following models: logistic
regression, (multinomial) naive Bayes classification, support vector machines, k-nearest neighbors
algorithm, random forest classifier, LSTM recurrent neural networks, convolutional neural networks,
and a combination of the latter two. Over all our following examples, let our dataset be denoted by

{ (as(i), y(i)) }?:1, with each z representing the messages and y representing its spam or ham label.

Logistic regression assumes that our hypotheses for predicting the (probability of the) label y(*) €
[0, 1] (with either 0 being ham and 1 being spam) for the SMS message data 2 is related through
the parameters 6 in the logistic/sigmoid function g such that

i i 1
ho(@®) = 9(072) =
This generates a linear decision boundary at y = 0.5 that allows us to classify each message.
Over a full each iteration of the algorithm, we utilize that p(y(*) = 1|z(?);6) = hy(z(?) and that
p(y@ = 012®;0) = 1 — p(y® = 1|12;0) = 1 — hy(z?) to obtain the following objective
function to maximize:

n

J(6) =3 (v 108 ho(=?) + (1 =) log (1 = ho(='))).

i=1
A multinomial naive Bayes classifier first embeds each SMS message (") = (mgl) , :z:g), cey xfii))
as a vector of d words, with each word xy) € {1,...|V]} taking a value representing one of

the |V| possible words in the whole dataset-wide vocabulary. As such, the overall probability
for an SMS message would be p(y*)) H?Zl p(zgl) ly®), with () being a Bernoulli variable for

the label and z(*) |y(i) being a multinomial variable over the message given the label. Letting
our respective parameters for any word j be 0 = {¢y, i|y—1, Pr|y—0}. such that ¢, = p(y),
Prjy=1 = p(x; = kly = 1), and ¢yy—o = p(x; = k|y = 0), we obtain the following likelihood
function to maximize:

n d
=1 [2@560) [T 2 19s Sriy—0: Briy=1)

i=1 j=1

Support vector machines focus not only on finding a decision boundary but also finding one that
increases the margin of as many data points from that decision boundary as possible — those with
a smaller margin from the boundary being harder to predict than those farther away. This means
that we parametrize a linear classifier with slope w and intercept b such that h,, ;(7) = g(w?x + b),
where g is the sign function. We then find the optimal margin classifier by solving the constraints for
i€ {l,...,n} that

1 ; ;
mil? §||w||2 s.t. y® (me(Z) + b) > 1.

Simply put, classification with the k-nearest neighbors algorithm uses some distance metric to
group points into k clusters, based on the minimal distance achieved from other points. The algorithm,
with k£ = 2 and using the Euclidean distance || - || as we did, is as follows. We first pick a data point
(x(i), y(i)); then iterating over each point in the dataset (a:(k), y(k)) we find and store each distance
di; = || (z®,y®)) — (2, y®) ||. We then pick the smallest k = 2 distances and then return their
mode.

Random forest classifiers generate via bootstrap a set number (we used 100) of decision trees that
take in a sequence of points { (z(*),y(")} and decides based on its features which of the two classes,
ham or spam, a message will belong to. The key idea of this algorithm is that multiple trees acting
in committee, with each of them deciding classification via certain features, is better than just one;
bootstrapping over the data will allow us to feed each tree in the committee different combinations of
data.

Recurrent neural networks have long been shown to be effective at natural language classification
tasks, in our case taking in as input one message =(*) and concluding if the output p(y(i) gives us
a spam or ham prediction. The long short-term memory (LSTM) unit, comprised of a cell with
input, output, and forget gates, is no exception. Given the numbers of input features d and hidden
units h, the variables of LSTM units at time ¢ involve an input vector x; € R?, activation vectors for
the input/output/forget gates i, 0s, f; € R", cell state and cell input activation vectors ¢, ¢; € R”,
the hidden state or output vector ; € R”, and weight and bias parameters W, € RM>d, U, € RAXA,
and b, € R" for each gate type ¢. This gives the following set of equations for forward pass, where
® is the Hadamard element-wise product and o is the sigmoid function:

ft=o (Wfl?t +Urhi—1+ bf)

it =0 (WZ.’L’t + Uiht—l + bz)

O g (WO:Et + Uoht—l + bo)

615 = tanh (Wcmt + Ucht_l + bc)

G=fiOc 1+ O

ht 0 © tanh(ft).
This model will be very strong at determining spam or ham based on long-term dependencies. The
parameters for the LSTM model we used are below in Figure 2 on the left.

Convolutional neural networks (CNNs) have also been shown to be effective for natural language
classification, taking the input of messages as a matrix and convolving them over multiple layers to
analyze spam or ham probabilities in the end. The parameters for the CNN model we used are below
in Figure 2 on the right.

Model: "model_o
Model: “model 5"

Layer (type) Output Shape Param #

Layer (type) Output Shape Param #
inputs (InputLayer) [(None, 158)] [}

inputs (InputLayer None, 15@) 2
embedding o (Embedding) (None, 150, 50) 50000 puts: {1nputlayer) [1
ropoit 15 (Dtopedt) one: A58 500 = embedding_5 (Embedding) (None, 150, 64) 64000
Tstn 7 (L5TH) (one, 63) Jodia convid_2 (ConviD) (None, 148, 32) 6176
FC1 (Dense) (None, 256) 16640 max_poolingld 2 (MaxPoolingl (None, 74, 32) ° Fi ’

1gure Z.

leaky_re_lu_7 (LeakyReLU) (None, 256)] leaky_re_lu_4 (LeakyRelU) (None, 74, 32) e g
dropout_11 (Dropout) (None, 256) o flatten_1 (Flatten) (None, 2368))

out_layer (Dense) (None, 1) 257 out_layer (Dense) (None, 1) 2369

activation 9 (Activation) (None, 1) @ activation_5 (Activation) (None, 1) -]

Total params: 96,337
Trainable params: 96,337
Non-trainable params: @

Total params: 72,545
Trainable params: 72,545
Non-trainable params: @

6 Experiments, Results, and Discussion

TF— IDF, CountVectorizer, Tokenizer, and Transformer Based features were used to train on five
probalistic models namely Naive Bayes, Logistic Regression, Support Vector Machine (SVM), K
Nearest Neighbors, Random Forest and three Deep learning models including an ong Short-Term
Memory(LSTM), Convolutional Neural Network (CNN) and a hybrid model of CNN and LSTM. The
results from our experiments showed that the Random Forest Model with CountVectorizer features
provided the best performance for this classfication task with an accuracy of 99.821 % as seen in
figures 3.

—— Model
Ham 1.00 1.00 1.00 1934
Spam 1.00 0.99 0.99 301

accuracy 1.00 2235 04
macro avg 1.00 0.99 1.00 2235 o
weighted avg 1.00 1.00 1.00 2235

Predicted Ham Predicted Spam 02

Ham 1934 0) 1 + =

Spam 4 297
Accuracy: 0.99821

Figure 3.

Given the limit of the number of pages we are unable to display all the graphs.

7 Conclusion and Future Work

Our work showed that using a count vectorizer with a random forest algorithm to classify SMS
messages was most highly accurate in identifying spam, which by the dataset construction meant that
it identified nearly all fraudulent messages sent. We hope to build more on the data processing side to
fully develop a system on this model that might most effectively, compared to current products on the
market, keep vulnerable people in developing economies safe.

8 Contributions

Every part of the project was equally contributed to by both partners.

9 Link to Our Code

https://github.com/Fatmangh/Mobile-Money-Fraud-Detection-using-Deep-Learning

References

[1]E. A. Lopez-Rojas , A. Elmir, and S. Axelsson. "PaySim: A financial mobile money simulator
for fraud detection". In: The 28th European Modeling and Simulation Symposium-EMSS, Larnaca,
Cyprus. 2016

[2] Almeida, T.A., Gomez Hidalgo, J.M., Yamakami, A. Contributions to the Study of SMS Spam
Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium on Document
Engineering (DOCENG’11), Mountain View, CA, USA, 2011.

[3] “Control of Fraud on Mobile Money Services in Ghana: An Exploratory Study | Emerald
Insight.” Emerald Insight, 7 May 2019, www.emerald.com/insight/content/doi/10.1108/JMLC-03-
2018-0023/full/htmlloginreload.

xxxxx

[4] Botchey, Francis Effirim. “Mobile Money Fraud Prediction—A Cross-Case Analysis on the Effi-
ciency of Support Vector Machines, Gradient Boosted Decision Trees, and Naive Bayes Algorithms.”
MDFPI, 31 June 2020, www.mdpi.com/2078-2489/11/8/383/htmB43-information-11-00383.

[5] Magagula, Shile. "Mobile Money SMS Classification And Text Analysis: Exploring Possibilities
For Enhanced Financial Inclusion." Bachelor thesis, May 2020.

[6] Bandyopadhyay, Samir and Shawni Dutta. "Detection of Fraud Transactions Us-
ing Recurrent Neural Network during COVID-19." Preprints 2020, 2020060368 (doi:
10.20944/preprints202006.0368.v1).

[7] Adedoyin, Adeyinka. "Predicting Fraud in Mobile Money Transfer." PhD thesis, June 2018.

[8] Adedoyin, Adeyinka, et al. "Predicting Fraud in Mobile Money Transfer Using Case-Based
Reasoning." In: Bramer M., Petridis M. (eds) Artificial Intelligence XXXIV. SGAI 2017. Lecture
Notes in Computer Science, vol 10630. Springer, Cham.

