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Introduction

While genre is perhaps the most common term for classification of musical sound, characterizing genre and
timbre from audio waveform is notoriously difficult. This is especially so for modern music with complex
combinations of musical sound. While genre is difficult to describe explicitly, it is plausible to cluster similar
sounds, suggesting the feasibility of generative audio models trained on data labeled by genre. In recent years
we have seen convolutional neural networks revolutionize image and video generation, and we hypothesize
that similar technologies will empower advances in audio generation, manipulation, and reconstruction. We
produce a generative model for genre transfer between lo-fi hip hop, trap, and R&B waveforms, using a
CycleGAN with Mel-spectrogram representations to output a constructed spectrogram for the target genre.
While our immediate application is a creative tool to inspire artists, significant results could foreshadow
generational improvements in audio communication technologies.

Related Work

Our method is inspired by recent advances of Huang et. al (2019), who used a constant-Q transform (CQT)
waveform representation, a CycleGAN, and a WaveNet synthesizer to transfer a line of music from one
instrument to another (e.g. piano to harpsichord).? However, instead of simply monophonic instruments,
we train a model to differentiate and produce different genres of music. Viere et. al (2019) used a Cycle-
GAN on Mel-spectrograms with liguid and dancefloor drum and bass songs (which produce high-contrast
spectrograms) with alignment of phase information. We use data without phase alignment or labeling, and
less specifically-defined sound characteristics. Brunner et. al (2018) used a CycleGAN for symbolic musical
transfer (i.e. MIDI data) with notable success. This suggests promising potential for computational musi-
cal style transfer, which we independently extend to audio waveforms. We stand on the shoulders of Zhu
et. al, whose CycleGAN for various style transfers with unpaired images we use as an inspiration for our
implementation.

Dataset

Data Representation

Our dataset to train the CycleGAN is collected from curated YouTube playlists of instrumental music from
three distinct genres: 1) lo-fi, 2) trap, and 3) old R&B. Our data is separated into 3 groups (corresponding
to each genre) of 800 data points each. Each data point is a 4-second .wav clip that was chopped from the
original playlist of the respective genre, which in turn is then transformed into a MEL-scaled spectrogram
with resolution 496 x 369. We obtain the MEL-scaled spectrogram by first applying a short-time Fourier
transform (STFT) with a Hamming window w(n) (see Results for figures). Compactly, the STFT is given
by

L1
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where L = 2048 is the window length, and our step size is 1024. We then square the STFT spectrogram’s
amplitude and convert it to a decibel scale (20log;((]S])). This representation is chosen as the MEL-
frequency scale offers higher resolution to lower-frequencies, which is key in drum and bass heavy music.
Each group of 800 points is split into 790 training examples and 10 test examples. Note we do have a total

Thttps://github.com/eayumba/pytorch-CycleGAN-and-pix2pix

2We contacted the lead author and found that their code has not been made public because they had some trouble duplicating
their results after several key training example audio files were lost. However, we believe their method still works, as many
others have tried similar approaches of translating wave-forms to images where ML and deep-learning techniques are more
robust.



of more than 1300 data points in each genre, so training or testing on more examples is definitely possible.
However, given the repetitive nature of the songs, and given that our 800 data points were randomly pulled
from the whole set of data points, we believe this approach is sufficient to show our results.

Each genre was chosen precisely to fulfill a set of criteria that would lead to sensible, interpretable results.
First, every genre needs to be objectively distinguishable from another. This entails having genres be
sufficiently different with discernible characteristics. For instance, while trap and drill are different genres,
they may be so similar that most differences can be explained by idiosyncratic tastes. The same could be
argued comparing modern RE&B and lo-fi. Second, these three genres were chosen because we know certain
well-defined elements are present in each — elements that should be seen in our CycleGAN output. For
instance, knowing that lo-fi music is characterized by high-pass filtered drums gives us some insight into
what we should expect to see in our output. In addition, stuttering hi-hats which define trap music will
never be seen in lo-fi. In contrast, old R€B is comprised of real instrumentation and older analog recording
quality. The feel is distinctly unique, and from an analytical view, the frequency spectrum should be smaller
than that of modern music.

The original CycleGAN included data augmentation in the form of random cropping and jittering. We
decided the former because each spectrogram contains important information in frequency along the y-
dimension, and all of our examples are time aligned on the z-dimension (4 seconds). We similarly did not
implement the latter because the 4-second chopping effectively is random jittering, given that no song other
than 60bpm will lead to chops at regular intervals.

Data Considerations

For quality control, we note that none of these songs have "producer tags" so no unnecessary artifacts are
introduced. In addition, because words are often included in lo-fi songs, we chose a playlist where this very
infrequently occurred. To our knowledge, we have removed 4-second clips where words occur. To further
improve our data, we removed 4-second clips where the the audio cuts and transitions to the next song.

We chose not to standardize the song sections in our data (e.g. pulling 4-second snippets only from choruses).
Veire (2019) chooses to align both the tempo as well as the section, but we believe the nature of our genres
makes this unnecessary. In particular, lo-fi and trap are highly repetitive, and choruses are often not-well
defined. However, we acknowledge that the beginning and ends of songs are often different from the middle
sections, but explicitly accounting for this may not provide much benefit, given that beginning sections do
often repeat in lo-fi music. Whether this would improve our training significantly will be evaluated in the
future, but for our project, we thought it would be more important to collect more data points with a small
error than to have less data with less error.

Methods

We focused primarily on the translation between lo-fi and trap. As a first pass, we trained a logistic
classifier to differentiate between the two genres. If the logistic classifier could not distinguish between two
spectrograms of different genres, then it is unlikely that our trained GAN would produce any sensible genre
transfer. Afterwards, we trained the CycleGAN. As did not discuss GANSs in class, we first talk briefly about
the GAN architecture and CycleGAN as an extension.

Logistic Classifier

As part of our initial research, we trained a logistic regression classifier to determine if it would be feasible
to identify differences between spectrograms of clips from different genres. To do this, we trained on 1200
256x256 4-second spectrograms, with 600 each from our lo-fi and trap datasets (order randomly shuffled),
denoted 0 and 1 respectively. We used the remaining 200 spectrograms from each genre as our test set. We
trained the model using a Limited-memory Broyden—Fletcher—Goldfarb—Shanno solver with optimal learning
rate schedule and convergence condition loss > losspes; — -001 for 5 consecutive iterations.



GAN & CycleGAN

In the original GAN introduced by Goodfellow et al. (2014), two neural networks, a generator G and a
discriminator D, play a min-max game against each other, updating their respective parameters ¢ and 0p
until each player’s loss is at a local minimum with respect to their own parameters. The generator pulls
noise z from some prior latent distribution and generates G(z), a "fake" that the discriminator attempts to
tell apart from = € X, a real example. The discriminator is trained like a logistic classifier. The loss function
is (almost) the cross-entropy for classifying real vs. fake:

Ip(0p,0c) = Exnpyy,, [—10g D(2)] + Eznp, [-log(1 — D(G(2))]

The CycleGAN by Zhu et al. (2017b) is an extension of the GAN. We now have a pair of GANs arranged
cyclically, between a source X and target Y. Two generators are now present, G: X — Y, and F: Y — X,
with two adversarial discriminators Dx and Dy . Instead of images being generated by random noise, now
the discriminators try to distinguish between real examples and translated examples. For instance, Dx
tries to distinguish between images {x} and {F(y)}. Here, X represents the set of lo-fi spectrograms,
while Y represents the set of trap (or R€B) spectrograms. There are now two GAN loss functions, one
for each discriminator: Joan (G, Dy, X,Y) = Ey p....w) 108 Dy (¥)] +Egnp,ora(e) log(l — Dy (G(z)))], and
Joan(G,Dx, X,Y) = Eyp,oia(@) 108 Dx (2)] + Eyopo.n ) log(l — Dx (F(y)))]. In addition, by the cyclic
nature, we also have a cycle-consistency or reconstruction loss, which in short penalizes the L1 norm of how
different x is from F'(G(z)) (forward loss) and how different y is from G(F(y)) (backward loss): Jeyo(G,F') =
Eorpaara@) |F(G(2)) = 2||1] + Eympiaca [|GF (y)) — yl|1]. Weighting the reconstruction cost by A, the total
loss can be expressed as

J(G‘,F’7 Dx,Dy) = JGAN(G,DY7X7 Y) + JGAN(F7 Dx,Y,X) + )\Lcyc(G,F)

In addition, we also considered an identity loss Jr4 to regularize the generator. Essentially, when feday € Y,
G(y) should equal y, i.e. G(-) should be the identity. The same applies to = and F(x).

Experiments & Results

We first discuss the logistic classifier. Then, for the CycleGAN, we focus on the mapping from lo-fi to trap
and provide select results for brevity, but our GitHub has a link to all tests performed. In whole, we have 10
from lo-fi to trap, 10 from trap to lo-fi, 10 from lo-fi to R&B, 10 from REB to lo-fi. Furthermore, we re-ran
everything without the identity loss Jr4 included, which led to overall poorer results.

Logistic Classifier

Our logistic regression classifier was 93.68% accurate on the test set, which inspired confidence in the fea-
sibility of identification of musical differences in genre with machine learning techniques and spectrogram
representations. Indeed, upon inspection of misclassified test examples (fig. 1.1), generally we either agreed
that the spectrogram could have represented music from the other genre, or exhibited structural abnormal-
ities such as the fourth spectrogram in the first row, which was produced by audio at the beginning of a
track. With this result in hand, we began researching generative audio models.

CycleGAN

Implementation Specifics

We largely follow Zhu et al. (2017b) in implementation. Our discriminator is a 70 x 70 PatchGAN which
classifies whether overlapping 70 x 70 pixel images are real or fake. This speeds up learning as such a

discriminator has fewer parameters than a full-image discriminator. Our generator is a convolutional ResNet
with 9 residual blocks adapted from He et al. (2015).

GANSs are highly notorious for being unstable. One stabilizing modification comes from replacing Jgan with
a least-squares loss. Furthermore, as in Zhu et al. (2017b), the discriminator updates using a history of 50
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Figure 1.1: Misclassified Test Examples

images, rather than the one image produced last by the generator. To keep the discriminator from being too
powerful, we divided the objective by 2 to slow down the learning speed of D. We trained our CycleGAN
first for 150 epochs, and then later dialed it back to 50 epochs, as our spectrograms seemed to come out
to decent results without the additional run-time. As with Zhu et al., we used an Adam solver with batch
size 1 for our SGD, and a learning rate of 0.0002 which starts to linearly decreases to 0 after completion of
half the epochs have been completed. Lastly, we weighted A = 10 for the cycle-consistency loss. We ran the
CycleGAN on the GPU with High-RAM on Google Colab Pro.

Metrics

Qualitatively, our metric for successful CycleGAN training will be how the images look to us given what
we know. Stuttering hi-hats are characteristic to trap, and these are visible as ticks of dark red in each
spectrogram. In addition, we would expect translation from X to Y or Y to X to preserve the drum
structure. While no tempo was synced, each genre hovers around the same 60-80 beats per minute (¢rap can
be thought of as simply double-time). Because each 4-second spectrogram in either genre has a well-defined
tempo based on the Euclidean z-coordinate distance between hi-hats, snares, or kick drums (represented as a
narrow flash of darker red), we expect the CycleGAN to preserve this. One last qualitative metric would be
listening to the spectrogram if it were to be further translated into a .wav file via a phase-inferring process.

Quantitatively, our metric for successful CycleGAN training will seen in the loss of each discriminator,
generator, cycle, and identity (if present) loss. From Zhu et al. (2017b), GAN training often does not lead
to convergence, unless it is a WGAN. The losses are difficult to interpret as G and D are playing a minimax
game that changes with each iteration. As long as losses do not explode and decrease with training, the
CycleGAN is tentatively successful.

Results

In figures 1.2-1.8, we analyze MEL-spectrograms with a frequency y-axis ranging from 20-20000 Hz, and a
time z-axis ranging from 0-4 seconds. We are only analyzing genres lo-fi and trap, but full results are can
be found via the README on our GitHub.

We first begin with qualitative observations. Figure 1.2 below represents a real lo-fi spectrogram z, which
is transformed into a fake trap spectrogram G(x) (figure 1.3). We note that the red streaks in the top half
of G(z) are indicative of a potential hi-hat that has now been introduced by generator G. In the same vein,
we see in figures 1.4 and 1.5 that a trap spectrogram y loses its hi-hat stutter after being translated by F'



into the lo -fi domain. In addition, it appears that the drum pattern is largely untouched, which suggests
that at least some structural integrity of the tempo is preserved by the CycleGAN.

On the quantitative side, we note that the losses on average do decrease with each epoch. We have included
the link to the full loss results in the Google Drive link on GitHub. It appears that all losses start out
relatively big and decrease as training goes on. By the metrics listed above, this is indicative that our
CycleGAN has tentatively succeeded.

We note briefly here that when we ran the CycleGAN without the identity loss, the results were noticeably
worse, as seen comparing figure 1.6 and figure 1.8. It thus appears that the identity loss is important as
regularization as it prevents G and F' from overfitting. This is further echoed by the full loss result numbers
mentioned above. Looking at the loss log, it seems as if all aspects of loss are significant, and every single
one plays a substantial role in training the CycleGAN.

Figure 1.3: Fake G(x) Figure 1.4: Real y Figure 1.5: Fake F(y)

Figure 1.6: Original y Figure 1.7: G(F(y)) Figure 1.8: G(F(y))
with Jrg4 without Jrq

Future Work

In our implementation, we have attempted to transfer genres first between lo-fi and trap, and second between
lo-fi and R&B. We first used a MEL-spectrogram representation of audio forms and then trained a CycleGAN
to translate between genres with moderate success.

With more time and resources for this project, we would naturally next implement and train a Wavenet
Synthesizer to produce audio outputs from the model result spectrograms, in accordance with Huang et al.
(2018). This would allow for a qualitative assessment of the genre transfer viability of our model. We spent
some time looking for existing implementations of such a network and found successful implementations
using arrays of MEL-spectrograms. However, we ran into issues when translating our spectrograms into
array representations. Future work would first involve further exploring the implementation of such a MEL-
Spectrogram-to-array representation as additional post-processing. Along with a Wavenet Vocoder, we could
then use the ultimate qualitative metric: listening to the CycleGAN outputs and analyzing the quality of
genre transfer.



Contributions

All group projects contributed equally. Mac and Emmanuel worked on implementation while Justin worked
on understanding the theory of the GAN/CycleGAN. We all taught each other what we knew and debugged
together the CycleGAN code together.
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