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1 Introduction

The problem of matrix completion (or, equivalently, matrix imputation, or matrix reconstruction) can be
summarized as follows: given a matrix Z € R™*™ and aset Q C {1,...,m} x{1,...,n} of indices of observed
entries of Z, can we infer the values for the unobserved entries Zg1 ? This has applications to the theory of
control systems for system identification, to providing precise location estimates for sensors given distances to
known markers, and to signal frequency and direction detection in signal processing [1].

Our interest is in the application of matrix completion to product recommendation systems through collabo-
rative filtering (as in [4]); given a set of u individual customers, and a set of ¢ items, let z,; be given as a
measure of the ‘affinity’ of individual u € {1,...,m} for product i € {1,...,n}, whether measured directly
(as through user reviews or star ratings) or indirectly (through, e.g., page views or purchase behaviour). The
task is then to complete the matrix Z by inferring the unobserved affinities Zg. from user-item relationships
for the observed affinities Zq.

Collaborative filtering methods face a cold start problem problem that content-based recommendations do
not; new items and new users both lack the observed affinities necessary from which to make meaninful
inferences. One side of this problem can potentially be mitigated by actively capturing users’ preferences
for examples of items that are highly informative of their preferences early on. To this end, we investigate
LassoNet [7], a regularization method for achieving feature sparsity in artifical neural networks.

2 Related work

There is a wealth of research into mitigating the cold-start problem in collaborative filtering. [5] proposes
a merging of users explictly trusted (and specified) by a given user, while [11] proposes augmenting with
demographic data and online social media activity. [2] proposes generating ‘virtual, but plausible neighbors’ to
cold-start users. [10] proposes weighting schemes from cold-start, post cold-start, and power users separately.
[13] is an example of one of the many avenues that seek to uncover more latent information with richer model
architectures. Unsurprisingly, recommendation systems is a very large area with a great deal of application
and an abundance of research.

3 Dataset and features

In the course of our investigation, we will use the somewhat famous MovieLens dataset!, provided by
GroupLens and the University of Minnesota. The MovieLens 1M dataset consists of 1,000,209 distinct ratings
(on a scale from 1 to 5) of 3,706 movies by 6,040 users, each user having rated at least 20 movies. The data
consist of the tuples (userID, itemID, rating, timestamp) for each rating. The MovieLens 100k dataset is
similarly structured, and comprised of 100,000 distinct reviews by 943 users of 1,682 movies. For methods
that rely on explicit feedback, the star rating was used directly; for implicit feedback, a positive case was
taken to be a star rating of 4.0 or greater.

'https://grouplens.org/datasets /movielens,/



4 Methods

[7] proposes a variant of the LassoNet algorithm (described in the same paper) for matrix completion,
with a ‘warm start’ procedure that commences with row-mean imputation and then alternating rounds of
unsupervised row reconstruction and re-imputation from the reconstructed elements. We attempt here a
different warm-start scenario for LassoNet, where the machine learning task over which the regularization
path is found is to reconstruct a user-item affinity matrix whose inferred completion is estimated by other
means.

Two baseline methods, Item-based k-nearest-neighbor (ItemKNN) [3] and Matrix Factorization (MF) [6], were
chosen, as well as two high benchmarking collaborative filtering methods: Bayesian Personalized Ranking
(BPR) [9] and Bilateral Variational Autoencoder for Collaborative Filtering (BiVAECF) [12].

4.1 Collaborative filtering methods
4.1.1 TItem-based k-nearest-neighbor (ItemKNN)

ItemKNN is an extension of k-nearest-neighbors which aims to provide recommendations of similar items.
The distance measure here between item ¢ and item j is simply cos(f), where 6 is the angle between the
zero-filled vectors z; and z;.

4.1.2 Matrix Factorization (MF)

Matrix factorization is a broad category of techniques; in its simplest form, we suppose the matrix Z = WH,
with W € R¥*" H € R*"*™ W a matrix of latent item factors, and R a matrix of latent user factors, with k
the number of latent factors.

This decomposition can be found by minimizing ||Z — Zo||p + Aw ||W||r + Aa||H||r, where || - || is the
Frobenius norm.

4.1.3 Bayesian Personalized Ranking (BPR)

Bayesian Personalized Ranking seeks to optimize the posterior probability of model parameters O,
p(®] >u) ~ p(>u |©)p(O)

given a user’s implicit preference relation >, among items, where the probability user u prefers item i over
item j is defined as p(i >, j | ©) = 0(24i;(0©)), with o the logistic function. The maximum a posteriori

estimator
J =Y logo(zui;) — AelO]?
(u,1,5)

is differentable and solvable by stochastic gradient descent. x;; is estimated by &.;; = £us — $4;, which in
turn is estimated by matrix factorization:

k
Bui = (Wu, hi) = Y was - hig
f=1

4.1.4 Bilateral Variational Autoencoder for Collaborative Filtering (BiVAECF)

BiVAECF is a generative model that extends Variational Autoencoders for Collaborative Filtering [8]. One
assumes 2,4 to follow an exponential family of distributions, i.e. z,; ~ EXPFAM(ry;;n(0y; Bi; w)), with 5;
and 6, representing latent item and user parameters, respectively, with E(2i|0u, i) = gw(0u; 5i) for some
nonlinear g, (in this case a neural network).

4.2 LassoNet

The motivation for LassoNet is to provide a means to achieve feature sparsity in arbitrary, potentially deep
residual neural networks.

Taking f to be a residual feed-forward neural network, i.e.,

f(a) =0Tz + fw(z),



we minimize the L; penalized loss
L0, W) + All0]]1,
subject to the constraint

W < M|6;],5 € {1,...,d},

where d is the dimension of §. Regularization is achieved here in two ways; the L; penalty controls the
complexity of the fitted model, and M, the hierarchy coefficient, controls the mixture of the linear (residual)
and nonlinear components.

Minimizing the objective is solvable by a proximal gradient descent algorithm outlined in [7].

5 Results

The MovieLens 1M dataset was partitioned into a 70% / 15% / 15% train / validation / test split such that
every item was reviewed at least once and every user contributed at least one review in each partition of the
data. Hyperparamter tuning was done using grid search on k for ItemKNN, and random search for all others.
For BPR, the hyperparameters that maximize the AUC of implicit preferences on the validation set were
chosen, for all others, those maximizing RMSE of explicit ratings were chosen. The hyperparameters selected
were: k = 20 for ItemKNN, k£ = 1502 and learning rate o  0.0084 for MF, and k = 120 and « =~ 0.0099 for
BPR.

For BiVAECF, an architecture of one hidden layer of dimension 200 was chosen a priori with tanh activation,
and the models were trained for 400 epochs. A batch size of 64, learning rate « =~ 0.0025, and k = 30 hidden
dimensions were the hyperparameters estimated.

Tables 1 and 2 show implicit preference validation metrics on the validation and test datasets, respectively.

Evaluation metric
AUC MAP nDCG@I0 Precision@l0 Recall@10

ItemKNN  0.7436  0.0129 0.0059 0.0068 0.0046
MF 0.7882  0.0291 0.0383 0.0293 0.0382
BPR 0.9355 0.0681 0.0791 0.0533 0.0915
BiVAECF 0.9326  0.0641 0.0737 0.0497 0.0869

Table 1: Evaluation metrics on validation set (%15 sampled from MovieLens IMM)

Evaluation metric

AUC MAP nDCGQI0 Precision@l0 Recall@10

ItemKNN  0.7401  0.0166 0.0084 0.0097 0.0048
MF 0.7868  0.0338 0.0476 0.0399 0.0360
BPR 0.9373 0.0819 0.0989 0.0769 0.0896
BiVAECF 0.9354  0.0771 0.0909 0.0703 0.0841

Table 2: Evaluation metrics on test set (%15 sampled from MovieLens 1IMM)

In addition to AUC on implicit preference, we show several information retrieval metrics: Normalized
Discounted Cumulative Gain® as well as precision and recall, for the 10 highest inferred ranking items for
each user.

The fitted BIVAECF and BPR models were then used to construct a matrix of inferred affinities for those
users and items who also appear in the MovieLens100k dataset, and LassoNet was used to find a regularization
path through movies over the task of reconstructing each row of standardized preferences through a residual
feed-forward artifical neural network (once with a single hidden layer of 100 neurons, and once with 500), with
the default hierarchy parameter of M = 10, with a 75% / 25% train / validation split. The regularization
path over successive values of A is shown in 5, as well as the feature importance, here defined as the value of
A at which the feature is removed.

2For ItemKNN, k denotes the k nearest neighbors; for all others, k is the number of latent feature dimensions.

3 nDCG@10 is given by Z}il 1o2gzi(i_+11) where 7 ranges over the 10 items recommended to a given user, and y; is

the preference of that user for item 4




Regularization path, 100 hidden layers
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Among the 100 most popular movies, the last to be removed on each regularization path were:

BPR warm start :

1

Rl Al

Dr. Strangelove or: How I Learned to Stop
Worrying and Love the Bomb (1964), [1201]

The Fugitive (1993) [1128]
Terminator 2: Judgment Day (1991) [1065]

Fargo (1995) [1032]

The Shawshank Redemption (1994) [1030]

BiVAECF warm start :

A I

Babe (1995) [1242]

Amadeus (1984)

The Silence of the Lambs (1995) [1173]
Casablanca (1942) [1163]

True Lies (1997) [1155]

(Numbers in parentheses are the year the movie was released, numbers in square brackets are their feature
importance ranking).

6 Conclusions and future work

It would be tempting to interpret the movies listed above as perhaps approaching a short list of movies that
are at a saddle point between being most informative about a person’s movie preferences and most abundant
among peoples’ preferences. If they are, the question remains whether it is such ‘a’ list, or ‘the’ list, since the
order features are visited in the regularization path may be sensitive to small changes in the data.

Additionally, during regularization, a lot of predictive value seems to be given up for early values of A. The
feature importance curve is long tailed, and relatively high values of A have to be arrived at before any features
are effectively removed. There is a well-understood popularity bias in collaborative filtering. Unurprisingly,
therefore, there is in fact a small number of ‘important’ movies that are predictive of preferences, but to



maximize predictive power, as many preferences as possible are needed. Once only a few ‘unimportant’ movies
are taken away, the error increases and doesn’t increase much farther.

The default hierarchy parameter M = 10 was attested in [7] to work well for a large variety of datasets, but
those authors also stated that it would be difficult to set without some expertise on the domain or task; the
next, obvious step would be to try to tune this parameter.

Preferences that are informative of other preferences are at the core of collaborative filtering. There may be
more direct, obvious ways to detect such highly informative items; this author is only beginning learning about
recommendation systems and information retrieval. The question ‘which preferences are most informative
about a users’ other preferences’ is still, we believe, a reasonable one.
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