Using Q-Learning to Personalize Pedagogical Policies for Addition Problems

Takara Truong! Amanda Shen! Cortney Weintz !

Abstract

The prevalence of COVID-19 over the past year
has illuminated the need for effective digital edu-
cation tools. With students studying from home,
teachers have struggled to provide their students
with adequately challenging coursework. Our
project aims to solve this issue in the context of
math. More specifically, our goal is to encourage
thoughtful learning by supplying students with
personalized two-number addition problems that
take time to solve but that we expect the student
can still answer correctly. Our solution is to model
the process of selecting a math problem to give a
student as a Markov Decision Process (MDP) and
then use Q-learning to determine the best policy
for arriving at the most optimally challenging two-
number addition problem for that student. The
project creates three student simulators based on
group member data. We show that it took student
one: (162 4 134) iterations to give appropriate
level problems where the first entry is mean and
the second is standard deviation. Student two
took (230 £ 205) iterations, and student three
took (247 + 236) iterations. Lastly, we demon-
strate that pre-training our model on students two
and three and testing on student one showed a sig-
nificant improvement from (162 + 134) iterations
to (35 4 44) iterations.

1. Introduction

With the onset of the COVID-19 pandemic at the start of
2020, students, teachers, and tutors have overwhelmingly
been forced to adapt to an electronic learning (E-learning)
environment. No longer do students have immediate ac-
cess to their instructors during class hours or the ability to
freely utilize classroom resources. Accordingly, this abrupt

contribution 'Computer ~ Science, Stan-
ford University, Stanford, CA. Correspondence to:
Takara Truong <takaraet@stanford.edu>, Amanda
Shen <amshen@stanford.edu>, Cortney Weintz
<cweintz@stanford.edu>.

*Equal

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

change in educational practices has presented numerous
challenges to the learning experience (Irfan et al., 2020).
Many schools and tutoring services have adopted learning
management systems to administer E-learning. Unfortu-
nately, however, many students have been dissatisfied with
the quality of available learning resources and even more so
with the quality of online classes (Sarwar et al., 2020).

Regardless, E-learning has potential. The ability to easily ac-
commodate individual student needs, allow repeated access
to class material, and conform to each student’s ability level
provides promise in the field of E-learning for intelligent
tutoring systems (ITS).

Although E-learning via ITSs offers potential for improved
learning (VanLehn, 2011), providing students with ade-
quately challenging coursework that doesn’t exacerbate neg-
ative affects (e.g. frustration) has proven to be increasingly
difficult (Borracci et al., 2020).

1.1. Related Works

Efforts to create personalized ITSs using reinforcement
learning (RL) have broadly come to one of two conclusions:
(1) that applying RL to the task is unfeasible because the
system requires extensive experience to learn to teach prop-
erly (Iglesias et al., 2003; Beck, 2001) or (2) that learning
an initial value function by training on simulated students
can reduce the experience required to learn an accurate ped-
agogical policy (Iglesias et al., 2009a;b; Carroll & Peterson,
2002).

Additional efforts, such as that of Walkington & Bernacki,
have tried to personalizes math problems based on student
interest (2019) (e.g. giving a student that plays baseball a
word problem about baseballs instead of apples). Further,
Borracci et al. provides a model for an ITS that assists
students with algebraic problems rather than learning the
appropriate difficulty of the problem itself (2020).

These ITSs tend not to personalize well due to the difficulty
of defining a reward function that adequately captures rel-
evant aspects of a student’s learning. For example, Beck
defined a reward function based on minimizing time spent
on each problem which resulted in more shallow learning
(2001). They do, however, personalize better when trained
on both simulated and real student data and define rewards

Shortened title

based on student performance as shown by the work of Igle-
sias et al. (2009b). Thus, we turned our attention for this
paper to the reward function, defining it to target both the
correctness of the user’s response and the time it took them
to arrive at their solution.

1.2. Our Contribution

Our algorithm addresses the topic of two-number addition,
aiming to provide users with math problems that they will
spend the most amount of time working on while still arriv-
ing at the correct answer. The input to our algorithm is the
user’s answer and the amount of time they spent working on
the problem. We then use Q-learning to determine the next
problem to supply the user, with the goal of maximizing
the expected time spent to correctly answer the question —
encouraging rich learning outcomes. The algorithm grows
with the user and changes as the student progresses making
it ideal for this situation.

2. Methods

This paper uses the Markov Decision Process (MDP) as a
framework to model the problem. Mathematically, MDPs
are 4-tuples (S, A, T, R) of states, actions, transition and
successor function, reward function. The Q-learning algo-
rithm defines an agent whcih navigates the environment
defined by the MDP. By taking an action a € A in state s,
the agent will transition to a new state s’. Any action taken
from a state will result in the environment providing the
agent with a reward R(s, a, s’). The objective of the agent
is to maximize its total reward, in other words, to maximize
the reward function. It accomplishes this by taking the ac-
tion from a given state which maximizes the expected sum
of future rewards. Restated, the agent determines its current
action based upon the potential for future rewards where the
potential reward is a weighted sum of the expected value
of each future reward. For this paper, we defined relevant
MDP elements as:

» S := state space. Set of state representations for each
difficulty level of addition problems.

* 5o := start state. The base case problem of lowest
degree difficulty. These problems are zero added to
any constant.

e A := action function. Set of all valid actions that
allow transitioning between states (difficulty levels).
For this MDP, a valid action is a one hot vector that
can move a single feature up or down a level.

» T := transition and successor function. Determinis-
tic transition from current state to next state given an
action, Vs € S.Va € A3ls’ € S.(T(s,a,s’) = 1).

* R :=reward function. The difference between the
response time at time ¢ and and the predicted response
time at time ¢ + 1. Also, if the user gets the problem
incorrect, the difference returned will be negative.

To start, the Q-learning algorithm will decide the next action
to take based on the expected future reward that comes as a
result of each subsequent step. The weight for each step is
scaled by the discount factor, thus, the further a reward is
from the current state, the lower it is valued. The algorithm,
therefore, contains a function @ : S x A — R, which maps
a state—action pair to a real number, where () is initialized
as arbitrary constants. Then, for each time ¢, the agent
chooses an action a; to take from state s;, receives a reward
7 and enters a new state s;y;. Lastly, the agent updates
the (-table according to the update rule. This table’s rows
represent states and columns represent features, denoted as
(s¢,ay), and the the values are Q)-scores Q(s;, a;) defined
as

Q™ (s, a1) = Q" (s¢, ay)

+a|re+y- TeaX{Q(StH’ a)} — QOld(Stvat)

where « is the learning rate, r; is the reward at time ¢ and y
is the discount factor. The updating rule updates the (-table
for a specific state—action pair by taking it’s original score
times the weighted temporal differences

diff = 7 + 7 - max{Q(s¢41,0)} — Q" (51, ar) -
acA N———

old value

new value

3. Experiments

The following experiments aim to identify (1) how quickly
the algorithm can give an appropriately difficult problem
to the user and (2) whether pre-training makes this process
faster.

An appropriately difficult problem is given by the scenario
in which the optimal policy for the current state is to self-
loop and stay at that state. This indicates that there are no
other states that will lead to a longer problem solving time.
A separate Q-learning algorithm is employed to find the
optimal policy where the appropriately difficult state can
be found. From here the trainer is run from scratch and
completes when the optimal action is to stay in the same
state for several iterations.

Shortened title

Table 1. State Representation Examples.

State Representation
number 1 | number 2 | # of carry Example Math Problems
.. .. . # of zeros

digit count| digit count | operations
1 1 1 0 1+9 2+8 9+6
2 3 0 11+119] 11+793| 11+291
3 3 3 0 111+889 116+888| 898+114
2 2 1 2 10+90 30+70 70+50

3.1. Features and Dataset

The math problems given to the user are additions of two
natural numbers, each up to three digits. The Problem Gen-
erator produces all possible combinations of two three-digit
integers and bins the problems based on a set of features.
The math problems are characterized by the following fea-
tures:

* First integer digit count
» Second integer digit count
* Number of required carry operations

* Number of zeros contained in both integers

A tuple of these features comprise each state in the definition
of our MDP from which the Q-learning algorithm is ran on.
Thus, each addition problem belongs to a particular state of
feature combinations. Examples are given in Table 1.

For two three-digit addition problems, there are 1 million
total possible problems that can be given. Our feature ex-
tractor bins these problems into 49 distinct states. To reduce
the running time and improve user experience, the problem
data are serialized to json and the generating processes are
forced to be one-off jobs.

The data incorporates human-generated student data from
which a simulated student is created and the algorithm
trains on. For this project, we create a simulated student
for each group member named: AmandaSim, CortneySim,
TakaraSim. Each member was asked to answer four ran-
domly generated addition problems for each state. As a
handicap, all member solved the problems mentally. Once
completed, a distribution of response time and probability
of being correct was created for each state.

For experiment 2, we normalize the response time of each
student’s response to their max response time before creat-
ing a combined distribution.

3.2. Hyper Parameters

The simulation was ran with the following hyper-
parameters:

e ¢ := convergence. 5
* ¢ :=exploration factor. 0.3
¢ ~ := discount factor. 0.95

e « := step size. .5

where § is the limit on the number of iterations that the
optimal action must stay in the appropriate level state, € is
the probability of taking a non-optimal action, -y is the dis-
count factor, and « is the learning rate. This step size is kept
constant because we do not want to guarantee convergence.
The algorithm must adapt to the user as they progress and
learn. All hyper-parameters were tuned heuristically.

4. Results

The first experiment aimed to answer how quickly the algo-
rithm can give an appropriate level problem. Each experi-
ment was ran 100 times per student. Outliers were defined
by whether the point lay outside three standard deviations
from the mean and removed from the analysis. The follow-
ing results are reported as (mean =+ std) and rounded. It
took AmandaSim (162 + 134) iterations to give appropriate
level problems. CortneySim took (2304 205) iterations and
TakaraSim took (247 £ 236).

The second experiment aimed to answer whether pre-
training would make this process faster. Similar to the
first experiment, the second experiment was ran 100 times,
outliers were removed, and the result is reported as (mean
=+ std) and rounded. The algorithm was trained on the com-
bined normalized data-set of TakaraSim and CortneySim
and tested on AmandaSim. It took AmandaSim (35 + 44)
iterations to give appropriate level problems.

5. Discussion

Experiment 1 demonstrates that the algorithm can give ap-
propriately difficult problems; however, it takes many itera-
tions to arrive there. Experiment 2 shows that the algorithm
converges faster when pre-trained. AmandaSim saw an
improvement from 162 iterations to 35 iterations.

This observed improvement is reasonable since there are
similar trends in what students find difficult. For instance,
three digit problems will usually take longer to solve than
two digit problems. Yet, inspection of the student data shows
that each student has unique strengths and weaknesses. This
is a likely explanation for why it takes several iterations
for AmandaSim to adapt to the pre-trained Q-table from
CortneySim and TakaraSim.

Since we have defined actions to keep subsequent states
close (the following states are always a one hot vector away),
the algorithm works well with incremental changes but has

Shortened title

difficulty narrowing large gaps. Most notably, if a user
suddenly changes from being good at three digit additions
to being good at one digit addition, the algorithm is unable
to quickly unlearn and relearn because it must explore and
update iteratively. This suggests a need for several pre-
trained algorithms for different levels of users or a more
expressive action function.

6. Conclusion and Future Work

In this project we share an adaptive algorithm that provides
adequately challenging math problems for students. The
next step is to evaluate the algorithm on a more varied
group of students. Once complete, this project can make
several improvements. The project can be easily scaled
towards different types of problems such as subtraction,
multiplication, and division. Additionally, this algorithm
could be expanded towards solving algebraic problems or
word-based math problems. Future work may also use deep-
Q learning to alleviate the need for feature engineering.

7. Contributions

Takara Truong has taken lead on the project, bringing the
long term objectives to the table and doing a lot of the group
organizing and management. He also worked with Amanda
to determine the features we are using to describe each math
problem. Further, Takara developed our QLearning class
that will be used in conjunction with our MDP class to learn
which problems to give a student.

Amanda Shen has tackled much of the systems require-
ments, coming up with creative ways to better optimize
our algorithm by storing feature data in an external file
and constructing many useful data structures. Additionally,
Amanda was responsible for determining how to convert a
feature vector to an interpretable math problem that can be
displayed to the user.

Cortney Weintz was very influential in determining how
our group defined the MDP for our algorithm - specifying
how to approach representing math problems as feature
vectors and how to transition between states. He also imple-
mented the “actions” function of our MDP class, making
sure to account for invalid state representations of math
problems.

References

Beck, J. E. ADVISOR: a machine-learning architecture
for intelligent tutor construction. University of Mas-
sachusetts Amherst, 2001.

Borracci, G., Gauthier, E., Jennings, J., Sale, K., and Muld-
ner, K. The effect of assistance on learning and affect

in an algebra tutor. Journal of Educational Computing
Research, 57(8):2032-2052, 2020.

Carroll, J. L. and Peterson, T. Fixed vs. dynamic sub-transfer
in reinforcement learning. In ICMLA, pp. 3-8, 2002.

Iglesias, A., Martinez, P., and Fernandez, F. An experience
applying reinforcement learning in a web-based adaptive
and intelligent educational system. 2003.

Iglesias, A., Martinez, P., Aler, R., and Fernandez, F. Learn-
ing teaching strategies in an adaptive and intelligent edu-
cational system through reinforcement learning. Applied
Intelligence, 31(1):89-106, 2009a.

Iglesias, A., Martinez, P., Aler, R., and Fernidndez, F. Re-
inforcement learning of pedagogical policies in adaptive
and intelligent educational systems. Knowledge-Based
Systems, 22(4):266-270, 2009b.

Irfan, M., Kusumaningrum, B., Yulia, Y., and Widodo,
S. Challenges during the pandemic: Use of e-learning
in mathematics learning in higher education. Infin-
ity Journal, 9(2):147-158, 2020. ISSN 2460-9285.
doi: 10.22460/infinity.v9i2.p147-158. URL http:
//e-journal.stkipsiliwangi.ac.id/
index.php/infinity/article/view/1830.

Sarwar, H., Akhtar, H., Naecem, M., Khan, J., Waraich, K.,
Shabbir, S., Hasan, A., and Khurshid, Z. Self-reported
effectiveness of e-learning classes during covid-19 pan-
demic: A nation-wide survey of pakistani undergraduate
dentistry students. European Journal of Dentistry, 14:
S34 -S43, 2020.

VanLehn, K. The relative effectiveness of human tutoring,
intelligent tutoring systems, and other tutoring systems.
Educational Psychologist, 46(4):197-221, 2011. doi:
10.1080/00461520.2011.611369. URL https://doi.
org/10.1080/00461520.2011.6113609.

Walkington, C. and Bernacki, M. L. Personalizing algebra
to students’ individual interests in an intelligent tutoring
system: Moderators of impact. International Journal of
Artificial Intelligence in Education, 29(1):58-88, 2019.

