Machine Learning for Pinnacle Matchmaking in
Destiny 2

Garrick Fernandez
Department of Computer Science
Stanford University
Stanford, CA
garrick @cs.stanford.edu

Abstract—Video games often contain online components that
allow players across the world to interact and play with one
another. The systems which perform the matching of players
into teams are often collectively referred to as ‘“matchmaking.”
We focus on analyzing matchmaking in the video game Destiny
2, an online first-person shooter developed by Bungie. In this
paper, we develop and apply machine learning techniques to
Destiny 2 game data exposed by the Bungie.net Platform API,
with the goal of predicting the ‘“success” of the matching of
a group of player, as measured by end of game standing and
time to activity completion. The main contributions of this paper
are (1) a structured data pipeline for retrieving, processing
and aggregating data scraped from the Platform API, (2) data
analysis and application of machine learning for supervised and
unsupervised tasks, and (3) explorations of and proposals for
future work in feature engineering.

Index Terms—Category: Finance and Commerce, video games,
matchmaking, regression, data collection, API

I. INTRODUCTION AND PROBLEM MOTIVATION

In the realm of online gaming, Destiny 2 is unique in that
it facilitates player interaction in many ways. Players can
organically encounter each other online while exploring the
game’s many worlds, as well as prompt to get matched with
other players in order to participate in cooperative and com-
petitive activities. This latter process, a more explicit form of
matchmaking, depends on the fact that there are other players
currently online who are looking to play the same activity.
However, there are some activities that have matchmaking
disabled, due to the difficulty, coordination, and prerequisites
required for the activity (these activities are referred to as
“pinnacle” or “aspirational” activities—the things you do to
demonstrate mastery over the game).

This design choice has created an ecosystem around finding
people to play with, and there are already several established
networks that exist for finding teammates, such as LFG
(“looking for group”) websites, and clans, organized groups of
players that regularly play together. Bungie themselves have an
in-game matchmaking solution, called Guided Games, which
attempts to pair solo players (Seekers) and organized teams
(Guides). Unfortunately, Guided Games has been in beta since
the game’s original release in 2017 [I], and it suffers from

This project was done for CS229: Machine Learning. The code is available
on GitHub at garrickf/d2-ml. Thanks to Prof. Moses Charikar, Prof. Chris Ré,
and the rest of the teaching team for their feedback on the project and a great
class!

low concurrent player populations and, by extension, long
queue times [2]. The advantage of clan membership (and, to
some extent, using LFG apps) are that players can schedule
activities in advance, but these routes can be intimidating to
new or introverted players. One potential approach that could
improve the experience of looking for a team would be to
use a system to recommend other players they could play an
activity with right now, or in the near future: a “team-activity-
time” recommendation. Instead of putting the onus on a player
to find a group, the system can take advantage of the fact that
many people are in similar situations, wanting to play the same
activity—and proactively match them.

As a step towards that goal, we employ a number of
machine learning techniques on data publicly accessible via
the Bungie.net Platform API [3], with the goal of evaluating
the success or fitness of a matched group of players. This
system could be employed in a matchmaking pipeline to make
recommendations on which players could play an activity
together.

More formally, we define our task as a supervised learning
task, where the examples are historical games whose informa-
tion we can query from the API, and the labels are measures
of “success” reported by the game—for example, the time it
takes to complete an activity, or the team’s standing, victory
or defeat, at the end of a game.

The paper is structured as follows: In section II, we outline
a process for scraping data from the Destiny 2 APIL In section
II1, we outline the methods we tried for learning on our task.
In section IV, we detail the experiments we tried and evaluate
the results of our exploration. In section V, we situate our
work and results in the existing literature. In section VI, we
summarize our results and discuss avenues for future work.

II. DATA COLLECTION

Collecting data was a significant component of the project
due to the nature of its source. Traditional datasets with
well-formed features are not publicly available for Destiny 2;
however, some data is exposed via the Bungie.net Platform
API, opening the door for scraping together a dataset. The
API contains upwards of 100 endpoints that allow both first-
party and third-party apps to access and manipulate various
in-game and player data.

Of these many endpoints, only a subset provide any
useful information for our learning task. For example,
the Destiny2.GetPostGameCarnageReport endpoint
returns a summary of information related with a given
activityId, internally referred to as a post-game carnage
report (PGCR). The activityId is an unsigned 64-bit
integer, and it is assigned to activities in ascending order. See
Fig. 1 for an example PGCR response.

"Response": {
"period": "2021-05-07T10:06:122",
"startingPhaseIndex": O,
"activityDetails": {
"referenceId": 1575864965,
"directorActivityHash": ...,
"instanceId": "8400554258",
"mode": 63,
"modes": [
64,
63
1,
"isPrivate": false,

"membershipType": 3

}

Fig. 1. Truncated JSON PGCR response (full length is 2844 lines) for
activityId = 8400554258. This is a game of Gambit (a competitive
player vs. player mode, with additional non-player combatants (the “environ-
ment”), often categorized as PvPVE. There are additional fields for player
statistics and game metadata.

Assuming we rate-limit our requests to 25 per-second (the
limit imposed by the API), querying activity information for
every activityId from September 2017 to the present
(about 8.4 billion activities) would take upwards of 10 years!
To make things feasible, we limit our range to a period
of 10K/100K activities performed starting at an arbitrary
activityId (we picked one for a game played around
May). We implemented a threadpool to parallelize outgoing
requests, rate-limiting to avoid throttling; this sped up data
collection by up to fourteen fold.

An additional layer of complication in the data collection
is the presence of hashes in the response rather than localized
English strings (see See Fig. |, directorActivityHash).
The API is internationalized, and so the API responses are
decoupled from any language, and an additional hydration step
is needed to transform hashes into localized English strings. In
particular, a manifest (a file containing metadata for a group
of accompanying files—in our case, all the data we can query
from the platform API) can be downloaded as a compressed
SQLite database. The tables therein map hashes to localized
strings, representing static definitions of objects found within
Destiny.

We wrote an additional script script to download the man-
ifest and process it into an index used in the data collection
routine.

There is a level of stochasticity in the web scraper, as some
requests time out, network issues arise, etc. In addition, our
scraper does not reattempt a query for a failed activityId;
as such, on one particular run of scraping 10K activities, we
got back 8789 instances and 6042 scraped attributes (many
empty), spanning 124 unique activities (see Table I). The
distribution of activities are shown in Fig. 2, Fig. 3, and Fig. 4.

1000

800

600

400

200

0 20 40 60 80 100 120

Fig. 2. Distribution of activity type from 10K queries (field name:
directorActivityHash); the activities players choose to play follows
a power distribution. Activities from Fig. 4 are highlighted in orange for
comparison.

Top 10 Activities Bottom 10 Activities

1200 200

1000

800

600 100

400

200

o 000
> & ¢ o

\y‘} &
&

Fig. 3. Distributions of the top 10 and bottom 10 activities. Popular activities
are social spaces (“H.E.L.M.”), free roam (“Europa,” “The Moon,” etc.),
possibly because they act as hubs or places to visit before other, more
challenging activities. Activities from Fig. 4 are highlighted in orange for
comparison.

TABLE I
DATA COLLECTION RESULTS
Scrape Examples Found | Attributes Found | File Size
10K 8789 6042 55MB
10K (Gambit) 223 114 150KB
100K 80026 11498 0.93GB

We configured the scraper to filter data by game mode, as
each game mode supports a different number of players and
exposes different metadata and stats (in Gambit, for example,
players seek to defeat an enemy boss, the Primeval, that
isn’t present in other game modes, and thus carries unique
statistics). This has the added benefit of reducing the number
of “empty” columns.

We focus our attention on the game mode Gambit. Due to its
requirement for team cooperation, Gambit matches are a good
source of statistics for how teams behave and work together.
From our initial 10K scrape, we filtered out 223 Gambit
matches, with 113 attributes per example. The relatively high
number of attributes is due to collecting statistics for each
player, and there are eight players minimum per Gambit match
(sometimes, a player may leave the match, in which case an
additional player joins to fill the team).

Fig. 4. Distribution of activities selected by the author. Aside from the top
three, all activities here do not have matchmaking by default, so recommenda-
tions would be most impactful for these pinnacle activities. Game modes like
Gambit or Control can also serve as a good proxy, because of their competitive
nature.

III. METHODS

There are multiple factors of “success” in a single Destiny
2 game or match. If the game mode does not contain opposing
teams (player vs. environment, or PVE), the activity completion
time can be taken as a metric of team cohesion and success.
The longer the time to completion, the worse the team did. In
competitive game modes (PvP or PvPvE), there are separate
competing teams, and the standing, or end-of-game result
(victory or defeat) can be taken as a metric of team success.

In order to learn and predict completion time, we consider
several methods. One method is linear regression, whose cost
function is given by:

i 2 . !
J(0) =5 D (ho(a') —y1)? (1)
=1

where hy(z) = Z?:o 0;x; = 0T x (we use the convention of
letting x¢ = 1, the intercept). This function is convex. We can
derive this cost function from a probabilistic/MLE perspective.
The vectorized update rule for batch gradient descent is

0:=0+« Z(y(i) — ho(z®))z® @)
=1

Notice we don’t normalize over the number of examples
(as is convention with neural networks). Also note that the

negative sign typical in gradient descent (we move against the
direction of the gradient to minimize the cost function) has
been pushed inside the sum in (2).

As there are a lot of features, and some of them may be
collinear (for example, the number of kills versus the number
of combatants defeated, i.e., kills and assists), regularization
may result in better, simpler models and less overfitting to
the training data. We consider ridge regression and lasso
regression, whose cost functions are least squares with L2 and
L1 regularization, respectively. The cost function for Ridge
regression is:

J0) = 3 3 (ho(=®) —yD)2 + A6l

i=1

3

Where A is the regularization strength. The cost function
for Lasso regression is:

76) = 3 3 (ho(a®) ~ y O + el

=1

“

Where + is the regularization strength. By taking a Bayesian
interpretation of regularization, we can view ridge and lasso
regression as having a Gaussian and Laplace prior over the
parameters 6, respectively. Both priors encourage the param-
eter values to be closer to their mean (i.e., zero), resulting
in a shrinkage effect. In particular, lasso regression is known
to result in sparse parameters, where most parameter values
are zero, and only some are non-zero. This could be useful for
identifying which features are the most useful for our learning
task.

To evaluate the methods above, we use the coefficient of
determination R?, which is defined as:

-2
(Y

&)

Where u is the sum of squared residuals over our validation
(or test) set:

Tyal

u=)Y (@ —§¥)? 6)
i=1
and v is the total sum of squares, defined as:
Myal
v=> (4% —p)? @)

i=1
where in 7, ¢ is the mean of the observed data. Intuitively,

this statistic gives some measure of the goodness of fit for our
model. The best possible R? score is 1.0.

IV. EXPERIMENTS, RESULTS AND INTERPRETATION

A. Tools

In developing our data collection pipeline described in
section II, we used Postman [4] in order to inspect and explore
the results of API calls. The requests library was used in order
to make the calls.

We used an external library, scikit-learn [5], to perform
the methods described in Section III. Numpy and pandas
were used for data manipulation, and matplotlib was used for
making visualizations.

B. Regression on Activity Completion Time

See Table II for a collection of the results. We reduced
the number of features down to 81 by removing duplicate
features (e.g., each player had an activity completion time,
but they were all the same). We try both normalizing features
and leaving them unnormalized. As there are different scales
of features (for example, the kills a player performs in a match,
versus points they earn, which may be on a different scale),
we would expect normalization of features to help here.

For ridge and lasso regression, we additionally performed
hyperparameter search over the regularization strength.

It appeared lasso regression with normalized features and
moderate regularization strength (y = 1) outperformed other
models on the validation set. Notably, if the regularization
strength was tuned too high, this resulted in a poor fit to the
data, even reaching 0.0 with v = 10 (this indicates a constant
model that disregards the input features).

Inspecting the parameters returned by the model, we find
that only 13 of the 81 features are selected, and they are pri-
marily the number of player deaths for each of the characters.
Ranked by importance, we see that number of deaths is a
primary factor in determining the length of a Gambit match
(see Fig. 5).

TABLE II
REGRESSION ON ACTIVITY COMPLETION TIME
Method | Reg. Strength | Train R? | Val RZ | Test R?
LinReg N/A® 0.8299 0.6944
LinReg* N/A 0.8268 0.6803
Ridge 0.03 0.8297 0.6934
0.1 0.8293 0.6925
0.3 0.8285 0.6930
1 0.8276 0.6962
3 0.8266 0.6991
10 0.8252 0.6978
Ridge* 0.03 0.8252 0.6959
0.1 0.8208 0.7115
0.3 0.8091 0.7265
I 0.7749 0.7371
3 0.6984 0.7136
10 0.5081 0.5568
Lasso 0.03 0.8290 0.6935
0.1 0.8264 0.6966
0.3 0.8255 0.6937
1 0.8211 0.6859
3 0.8116 0.6418
10 0.7885 0.5899
Lasso* 0.03 0.8224 0.6817
0.1 0.8153 0.6745
0.3 0.7959 0.7135
1 0.7253 0.7667 0.6463
3 0.4121 0.4442
10 0.0000 -0.0348

aRegularization applies only to Ridge and Lasso.
*Indicates normalization of features was applied.

10

¥ W
& &L L L LS
3 @) B Y B Y Y Y
DR R R A AR R R R

CRCICRC

S & S
EPN I B 4
LA e Y

7 & Vo Cog W
N L
TEE

o
&
§
&

&

)

Fig. 5. Non-zero weights and attributes selected by the best lasso model, as
evaluated using Table II. Deaths are weighted more than other features.

Why could this be? It turns out, there is a mechanic in
Gambit called “Death Heals Primeval,” where player deaths
can cause the final boss to regenerate health. This would likely
have a direct impact on the length of the match, as players
would have to spend more time defeating the boss with each
additional death they incur.

V. RELATED WORK

This project seeks to look at ways of performing machine
learning on scraped video game data in order to facilitate better
matchmaking, whether between currently online players, or as
a “recommendation” system for all players, online and offline,
in a game’s pool. The TrueMatch system, developed by Minka
and Zaykov at Microsoft Research [6], has the similar goal of
using Al for matchmaking. Their system uses a reinforcement
learning model in order to build a probabilistic model of
the matchmaking process that can predict increases in online
player populations and adjust tolerances for network latency
and skill gap in order to reduce waiting times for players. Skill
iteslf may be measured by another system; Herbrich, Minka,
and Graepel outline an ELO-like system called TrueSkill [7], a
Bayesian skill rating algorithm based on approximate message
passing in factor graphs.

In contrast, our project is from the perspective of not
having access to internal data, or aggregated data over a
player’s history (such as skill or ELO rankings). As such, the
learning task is somewhat harder, and there are less “good”
quality features to work with. In light of Destiny’s unique
pinnacle activities requiring player coordination and having
matchmaking disabled, we care much more about team skill
and fitness. We also note that in the use case of offline
recommendations, factors like ping (internet connection) may
not be as important as they would be in an online matchmaking
process, which TrueMatch seeks to optimize.

Other analyses of Destiny data have been done; Bouchet
has analyzed the frequency of player activities as a function of
light level (a type of level that grows with in-game experience)
[8], and some websites have more thoroughly scraped PGCRs
to produce their own ELO rankings of players, much like
TrueSkill [9].

VI. CONCLUSION AND FUTURE WORK

In conclusion, we outline a method for data collection on
the Destiny 2 API, giving us access to statistics on games and
players that we can attempt to learn information from. This
data was then applied to the task of determining player and
team success in activities—in particular, we took a closer look
at activity completion times in the competitive game mode
Gambit as a proxy for team success. The main challenges
were in scraping the data from the API, interpreting them
as features, and reducing the dimensionality of the data by
dropping or aggregating features.

While we found that deaths are bad for a team in Gambit,
this may not be the case in other activities. There are hundreds
of activities in Destiny 2, each of which demand different
skillsets and forms of communication. More analysis needs
to be done for other game modes in order to make a better
judgement.

For future work, we would be interested in perform-
ing feature engineering to produce more aggregate fea-
tures. This could involve combinations of existing features,
or additional scraping of the API to get more data. For
example, an approximation of player ELO scores could
be obtained by querying for a player’s activity history
(Destiny2.GetActivityHistory), and computing the
number of wins, number of kills, types of activities played,
etc. In addition, the system which scrapes data from the API
could be made more robust (retrying failed requests, caching
data, etc.).

REFERENCES
1

—

“Guided games: bungie help,” https://help.bungie.net/hc/en-us/articles/
360049198951-Guided-Games (Accessed June 2021).

[2] D. Friedman, “Destiny 2’s solution for getting new players into raids
has some major problems,” Polygon, https://www.polygon.com/2017/10/
11/16453942/destiny-2-raid- guided- games (Accessed June 2021).

[3] “Bungie.net api,” https://bungie-net.github.io/multi/index.html (Ac-
cessed June 2021).
[4] “Postman: the collaboration platform for api development,” https://www.

postman.com/ (Accessed June 2021).

[5] “Scikit-learn: machine learning in python,” https:/scikit-learn.org/stable/
(accessed May 2021).

[6] “TrueMatch matchmaking system,” Microsoft Research, https://[www.
microsoft.com/en-us/research/project/truematch/ (Accessed June 2021).

[7]1 R. Herbrich, T. Minka, and T. Graepel, “Trueskill(tm): a bayesian skill
rating system,” in Advances in Neural Information Processing Systems
19, 2007, pp. 569-576.

[8] J. Bouchet, “Destiny user data analysis,” https://rpubs.com/

jonathanbouchet/destiny_user_data, (accessed June 2021).

“Destiny 2 stats, leaderboards, and more! - destiny tracker,” https:

//destinytracker.com/ (Accessed June 2021).

[9

—

