Is Pitchfork Out of Pitch? Investigating Bias in Pitchfork Album Reviews
Ayush Pandit, Kimberly Batdorf, Colin Kalicki

Github Repo: https://github.com/apandit42/fork-you-pitchfork

ABSTRACT

The online music publication Pitchfork has gained infamy in recent years due to criticism from fans and
artists alike who have accused the publication of being biased and unfair in its music reviews. Pitchfork
however continues to highlight its reviews as being original, authoritative, and unbiased. Putting these
claims to the test, we built a database of all published Pitchfork album reviews alongside audio metadata
and song lyrics. Then applying machine learning techniques to investigate to what extent bias in
Pitchfork’s review scores could be identified, we attempted to predict scores from audio and lyric
metadata. We found that though there were some general trends visible in Pitchfork’s album reviews,
overall the variability of album reviews, number of new artists reviewed with little available data, and
subjectivity within review scores and our own audio metadata features suggest that Pitchfork’s album
reviews are not broadly biased, but highly subjective.

INTRODUCTION

Over the years, the online music magazine Pitchfork has sparked repeated controversy over its critical
reviews and reception of many artists and albums (Xie) (Shaer). Despite the criticisms Pitchfork has
received over accusations of bias and favoritism in its review process, Pitchfork continues to claim to be
“the most trusted voice in music” (Pitchfork). As musicians and fans ourselves, we began wondering
whether Pitchfork retained relevance or validity in judging the quality of the modern music landscape,
and whether Pitchfork itself had any clear biases in its album reviews.

Motivated by trying to identify any biases present in Pitchfork’s album reviews, we decided to collect all
available Pitchfork album reviews and metadata for each album and its songs. We obtained audio
metadata from Spotify and lyrics data from Genius, and created different sets of feature matrices with
different combinations of the available data. We then planned to use these feature matrices into various
different machine learning models to predict Pitchfork review scores. By observing differences in model
performance based on available features, we hoped to identify any biases or preferences Pitchfork might
place in certain albums, artists, or songs over others.

RELATED WORK

Previous related work includes the report “Using Twitter to Predict Chart Position for Songs” from the
University of the West of England. This report utilizes machine learning models to predict how a track
performs on charts given what Twitter users have to say about the song and artist on the social media
platform (Tsiara E, Tjortjis C) Additional work includes the report “P4KxSpotify: A Dataset of Pitchfork
Music Reviews and Spotify Musical Features” by the University of Colorado, Boulder. In this report,
Pitchfork scores are directly compared to an album's Spotify characteristics and correlations between the
data are outlined (Pinter A, Paul J, et al.). Similar to how the University of West England investigated the
impact of public discourse on a track’s performance, our investigation aims to analyze the impact of
Spotify musical features and Genius lyrical data on an album’s performance when being reviewed by

a
Pitchfork. Although our own exploratory data analysis aligns well with what was reported by the previous
work mentioned above, we believe our combination of Spotify audio metadata with Genius lyrics as well
as our application of machine learning techniques directly to predict Pitchfork scores are a novel addition
to the existing work in this space, and have the potential to reveal deeper insights into potential biases or
non-biases that Pitchfork holds overall.

DATASET: (Kimberly, Ayush, Colin)

We scraped Pitchfork’s website to build a dataset corresponding to each one of Pitchfork’s album reviews,
grabbing the album name, artist name, year, and score associated with each review. Then, using Spotify’s
API, we searched for each album in Spotify’s database in order to obtain information concerning an
album’s musical metadata and listening statistics. We initially found 23,524 album reviews through
Pitchfork’s site and were able to find 16,442 of those albums on Spotify. We found that Pitchfork reviews
many obscure albums that are unavailable on Spotify.

iabiacition ot itk Baviaw Sk Given the number of instrumental and obscure albums,

1600 from the 16,442 albums found on Spotify, we were able
1400 to find lyric information through the Genius API for
1200 9,996 albums.

o 1000

g mo Given the Pitchfork, Spotify, and Genius data, we created

“aggregated tracks dataset” throughout, includes the

' audio features and listening statistics from Spotify for

s ¢ 0 each album. When analyzing audio features through the
Spotify API though, it is only possible to do so on the
level of a single track. For this reason, we applied various
calculations such that we can aggregate the audio features for all tracks across an album (i.e. the mean
tempo of songs across an album or the percentage of an album written in a certain time signature). In our
next dataset, we retained information on the track level, as opposed to simply aggregating this information
for each album. We found that 95% of albums have twenty tracks or less. For this reason, we created the
“tracks dataset”, including twenty-one columns for each audio feature for each album: one for each of the
twenty longest tracks on the album and one to represent the average across all remaining tracks on the
album, if such tracks exist. We later found though that these two initial datasets happened to be very
sparse and included widely varying values. For example, artists had anywhere between 0 and 79 million
Spotify followers. With this in mind, we chose to make scaled versions of these two datasets,
transforming the data such that every value in the matrix is in between 0 and 100.

| five different data matrices. The first, referred to as the

200 J J|
0 = ,l...hlldl I
4

0 2

Figure 1

Lastly, we created a dataset including lyrical data obtained from the Genius API and combined it with the
corresponding data from the scaled tracks dataset. Lyrical data consisted of features such as number of
unique words, repetitiveness, sentiment, profanity usage, and more obtained through Natural Language
Processing. This dataset served as a subset of the data, including only the 9,996 albums that had lyrical
data available through the Genius API.

Throughout our investigation, we reserved 75% of each dataset for training and 25% for testing.

METHODS AND RESULTS

Predicted

Data Set Selection and Classification (Kimberly)

Although Pitchfork assigns real numbers as scores for albums, we began our investigation by first
exploring classification. To turn this into a classification problem, we assigned new scores to each album,
such that they received a score of 0, 1, or 2 as opposed to any value in between 0.0 and 10.0. These new
scores represent the quantile that each album belongs to based on its score: 0 if its score is in the bottom
33.33 percentile, 1 if in the middle 33.33 percentile and 2 if in the top 33.33 percentile. We applied a

Accuracy by Data and Classifier

variety of classification
models to each of our five

Scaled Tracks

Figure 2

With these results in mind,

we next aimed to optimize a classifier
through feature analysis. Although when
applied to the aggregated tracks dataset the
Ridge classifier resulted in the highest
accuracy, we noticed that the aggregated
track dataset itself seemed to train much
more slowly in comparison to the scaled
version. For this reason, we chose to
optimize the Gradient Boosting classifier

Confusion Matrix
Count
725

286

Actual

Figure 4

Confusion Matrix of the Gradient Boosting Algorithm with

B4 feptures From the scaled tracks dataset, chosen from the
K-Best Features algorithm

Aggregated Tracks

N ADA
. Ridge
WN Gradient Boosting

datasets, and noted that the
highest accuracy seen was
0.461, as achieved through the
use of the Ridge classifier,
when applied to the
aggregated tracks dataset, as
seen in figure 2.

Scaled Aggregated Tracks

Accuracy of Gradient Boosting Classifier on Scaled Aggregated Tracks Data

® ICA
@® PCA

K-Best

Accuracy

0.43

0.42
80 82 84 86 88

Number of Features

Figure 3

when applied to the scaled aggregated
tracks dataset. When initially applied before feature
optimization, the Gradient Boosting classifier resulted in
an accuracy of 0.455, which was quite close to the
accuracy of the Ridge classifier on the aggregated track
dataset (figure 2).

To reduce the dimensionality of our matrix and optimize
our classifier, we then applied Independent Component
Analysis, Principal Component Analysis, and the Select
K Best algorithm on the scaled aggregated track dataset.
We found that the Gradient Boosting classifier performed

best, with an accuracy of 0.459 when the K-Best features algorithm was applied to select 84 features.
With this use of the K-Best features algorithm, we found that the following features had been excluded:
the standard deviation of the danceability of an album; the percentage of an album that is in key 2, key 4,

4

and key 7; the percentage of an album that is in a major key; and the percentage of an album that is made
up of an obscure album (not in the top 10 genres). While we saw an improvement, the accuracy of the
Gradient Boosting classifier only increased by 0.004. With this in mind, we then shifted towards
regression to investigate correlations between the Pitchfork, Spotify, and Genius data.

Regression (Colin)'

Utilizing the Scaled
: RandomForest [l Tou Aggregated Tracks
) [Train .
§~ 2 dataset, we aimed to
. L | use Regression
- U [
T = methods to analyze and
= attempt to predict the
NuSVR
g i exact Pitchfork scores
. v of albums (0.0 to 10.0).
- 8 Given that our data
“a BN e TR uUn From A) we can see the residual error score distributions with these top performing models -
" when comparing their training and test data. The graphs are all skewed to the left with ShOWS no pI‘eClSe Shape
- most :;ro: for:haz:P model fallg;g u;t rI:'emtween 0and-1. The Ia(f:k 01? normal dism:bun’or;d ' L.
idge corroborates what we see in B) with the poor ce of our linear models
® that have R*2 scores only slightly above ?::domly guessing (average of 0.07 if we take When p IOtted’ lt 1S beSt
§w out the outliers that are the Decision Tree and Extra Tree models). Both A) and B) suggest - -
§ the models with our data are not being accurately trained and they are doing only a little tO use llneal‘ rengSSIOIl
. g more than just guessing. However, in B) we can identify our three best performing models) R
ing Ridge, NuSVR, R: Forest re ion m . Their R
. i e ek minoidells. W ddenifffied
e e e - R 11 different models in
— order to first test the
iguare
efficacy of these
different regression models on
of fskras o oot b il mOur f 2
b ot our data set. We chose to useR
- s A 0 B°2 Srome minimizing number of features. The . .
: — /. i POA A e scores as our main metric of
ge / run across all models from 10 - 90
§ . features being selected for, at . . s 2
] < 7 cmenaol G Wecamseor identifying model success. R
E e = = 3 — Dimbar ol‘;omponen(s. it takes about 50
i/ S componets 0 oxlan 9% of our dt scores are a measurement of
- ;::an:e}n:sr?:;: els :sni es l‘:m R
N 2 s 05 ¢ 7 8 unde“r‘P‘CA) éogti:ufled‘?o inzrea?e?: : how ClOSCly the data fits to the
Wb of Catepanints X0 Sumber of (CA Festures X 10 near max number of components in our
reh a3 s foature for PCA and IChwas s 1o desired regression line, with a
e maximize the R*2 score. Below this
" e range of -1 to 1, therefore they
8 s — - || e decompose enougr)_lealures. Lastly, .
7 ’/) e 'K?:N :;S%f,::f:am::{*’%y;‘r,;a;;;: are a good metric of model
. igae / = e success in predicting data.
o s i 1t Do e Kestal Figure 5 shows the initial
models while minimizing our data by the -
e vl efficacy of our 11 different
. models. We found that the three
igure: &

best functioning linear regression models were NuSVR, Ridge, and Random Forest; however,

they each only had a R’score between 0.0744 to 0.100 which suggests that the models are not

doing much better than randomly guessing, which is a R’score of 0. One area that we had identified as an
issue with our dataset was the size and sparsity of it. Therefore, in order to try to improve our data we
decided to run Component Analysis and K-Best Features algorithms on the Scaled Aggregated Tracks, as

" For a better view of the Regression data look here.

seen inFigure 6. Our goal when applying these algorithms was to attempt to find the number of

components and K-Best features that could best minimize the data while possibly enhancing performance,

or at least give us an insight into features that are more important in our data set than others. We also
wanted to see if
decomposing our

Rescuss

.~ — Fhs data using ICA
= Random
I S = I Forest would reveal
ICA .
- BS NS — underlying
;.-:—_ . ~ I independent weights.
- Applying ICA., PCA.
i~ .- . and K-Best features
- ~- allgprtims ks each of
: ‘:.-f.‘.:'*‘ E : : B. our previously
identified top 3
A) shows the residual error score distributions for each of our previously identified top 3 p
Ridge models wh::-n KzeKStll)P?f\ a;nd ICA ;'aret:‘;)plied;o thzm. The specific ntumber of - . mOdelS we tested
components an est features select was based on measurements seen in Figure 2.
’ . - The ?esults of A) show that for all three models the feature selection and deoomposgition er fO ance ﬁ n dln
lgorithms did not tly i the rf f the models, as thy h till m
i - ke in e sams manner aa hey were n Figure 1. Thia i kuther supporie W B) as p T &
[i==4 I inal and -significant i t the the R*2 vall for the model: % P
C EERME TS A siarieaure saecion anddocomposon dgorims oo ppied o hom the maximized R
' e ' scores with the
Figura 7 minimal amount of

components or
features to reach that max steady state. We were able to identify that the ideal number of components for
ICA and PCA was between 75-80 which is only slightly smaller than our dataset (90 features) while for K

best features it was around 60 features that reached maxed R’ scores steadily for each of the three models.
Figure 6 shows how our models (Ridge, NuSVR, and Random tree) performed under these conditions
(selecting for the 60 best features and decomposing our models down to 77 features). As figure 2 shows

there were only small improvements to our models R’ scores. After searching for the 60 best features and
using a halving search to identify the optimal hyperparameters for our model (n_estimators =47,
max_depth = 6, max_features = auto, min_samples_split = 15, and min_samples_leaf = 13), we were able

to achieve a maxR score of 0.11 with our ensemble Random Forest method. Furthermore, our three
models' residual error distributions hardly changed after applying feature selection and decomposition.

Nevertheless, we were only able to improve theR score of the Random Forest model by 0.01. This
suggests that these models are still only marginally better than randomly guessing where to assign scores
via the data. This also shows that, though we can remove up to 30 features from our data and achieve
practically the same score, the features that remain do not have strong explanatory power from our data to
our labels. Random Forest being the best performing model also makes sense as we are able to hyper tune
the model in ways we are unable to do so for other non-ensemble linear regression models. Next, we
wanted to see if applying deep learning methods to our data could help us figure out these hidden
parameters that attached our features to their score.

Deep Learning (Ayush)

Having found that both standard classification models as well as regression models were insufficient for
achieving high accuracy with the data, we decided to implement custom deep learning models using the

PyTorch framework. Although ultimately we would like to develop an algorithm capable of predicting
real number scores, given the challenges that we faced with implementing regression models and the low
performance our classification models had, we focused on initially building neural network classifiers to
predict whether an album would be rated below average, average, or above average by Pitchfork.

Given the low variability of the columns in the aggregated tracks matrix we had designed earlier, we
reasoned that a neural network might be able to improve performance over the standard supervised
learning algorithms we had implemented by learning more complex interactions between features in the
scaled aggregated tracks dataset that the previously attempted methods were not able to capture.

When implementing deep learning, we selected Cross Entropy Loss as our loss function because it works

well for multi-class classification
macro avg f-seore tasks. We next chose Stochastic

| Gradient Descent as our optimizer
~~-——__function because of its robustness
RN Y . for convergence despite the high
e .~ dimensional and sparse nature of

AL T - our dataset.

Finally, we then implemented
several different architectures for
— our neural networks, and selected
the best three and their average F1
scores to be shown in Figure 8.
Our third best neural network (in
blue in the figure) consisted of 3
linear layers applied with the
Figure 8: F1 Scores for Top 3 Neural Network Classifiers for Pitchfork Score SELU activation function, which
performed more robustly across
trials than the standard ReL.U for our dataset. In addition to the 3 core linear layers, we also implemented
a dropout layer in between each linear layer to improve model robustness and performance, added a
I-dimensional batch normalization layer to regularize inputs through the model, and had a 3 neuron
output layer that was converted into class label predictions through a softmax function. Our second best
performing neural network had a similar structure to the SELU Linear Stack, except with two additional
layers that were recurrent neural network (RNN) cells. Since our dataset featured inputs that were often
correlated with each other due to the dates that each review was released, and since we saw that loss
values could become unstable across batches, we reasoned having RNN cells could help stabilize our
network, and potentially provide additional time-series learning. Finally, our best performing neural
network was also very similar to the SELU Linear Stack, but instead featured 6 linear layers activated
with the SELU function, and with 2 rounds of batch normalization. This was implemented to help reduce
the risk of exploding gradients and overfitting, since batch normalization helps act as a regularization
term on the network.

Although we tried many additional models to those listed above, we found that the vast majority of the
attempted architectures performed worse than the standard machine learning algorithms. Furthermore,
even with the above neural networks, we were only able to match or slightly outperform (~1% accuracy),
the best classifier algorithms we’d tested previously.

CONCLUSION & NEXT STEPS

Next steps to improve our data would include finding better methods in quantifying the available data.
There were issues with determining best ways to scale or quantify features such as genres or keys,
especially in relation to other features and their overall score. Since these scores are seemingly subjective
we could take further steps in improving our data sets by adding features about individuals’ thoughts
about the music. This could take the form of including social media data or specific music reviewer data
as they may be able to influence thought across the music review industry and general public opinion at
large. Furthermore, although we did implement several deep learning models and try multiple neural
network architectures, additional feature engineering around our dataset geared towards optimizing our
feature representations for deep learning could help significantly. This could also include additional
unstructured data for more complex learning tasks that aren’t suitable for classic machine learning
algorithms, such as building a network for natural language processing that could integrate direct lyric
data into making predictions on what Pitchfork’s reception of a song or album might be.

Aside from the subjective nature of rating music, our models may have reached a peak in accuracy and
scores due to a lack of available data. We found that many albums did not contain any genre information
on Spotify, were missing lyrical data, or were simply not available on Spotify. We predict that these
discrepancies between the Pitchfork, Spotify, and Genius datasets may have limited the predictive power
of our models.

Despite the claims that Pitchfork reviews are rigged, we find that audio data, Spotify listening statistics,
and lyrical data are not sufficient enough to predict Pitchfork scores or otherwise explain any sorts of
biases that may exist in Pitchfork reviews. We find that Pitchfork reviews albums across many different
spectrums: popular and obscure genres and artists, long and short albums, instrumental and lyrical, and so
much more. We have shown that through classification, regression, and even deep learning neural
network models, our predictor is consistently only able to perform slightly better than if it were to simply
guess the mean score. We can see this with classification and neural network performances peaking

. . 2 :
around 0.46 accuracy rates and regression models peaking near 0.1 R score. This suggests that Pitchfork
reviews do not necessarily have any sort of bias towards certain genres, audio features, artists, labels, etc.
but instead that they are simply subjective critic reviews.

CITATIONS

Pinter, Anthony T, et al. “P4KxSpotify: A Dataset of Pitchfork Music Reviews and Spotify Musical Features.”
Proceedings of the Fourteenth International AAAI Conference on Web and Social Media.

Pitchfork. “Pitchfork.” Pitchfork, Pitchfork, https://pitchfork.com/. Accessed 2 June 2021.

Shaer, Mathew. “Die Pitchfork Die.” Slate, Slate, 28 November 2006,
https://slate.com/culture/2006/11/the-indie-music-site-that-everyone-loves-to-hate.html. Accessed 2 June
2021.

Tsiara, Eleana, and Christos Tjortjis. “Using Twitter to Predict Chart Position for Songs.” Artificial Intelligence
Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras,
Greece, June 57, 2020, Proceedings, Part I vol. 583 62-72. 6 May. 2020,
doi:10.1007/978-3-030-49161-1_6

Xie, Teresa. “Why BROCKHAMPTON Hates Pitchfork.” 34th Street, The Daily Pennsylvanian Inc, 12 September
2019, https://www.34st.com/article/2019/09/brockhampton-pitchfork-dispute-kevin-abstract-reviews.

Accessed 2 June 2021.

