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Abstract—A huge volume of data can be collected by a
Tunnel Boring Machine (TBM) during tunneling. The collected
data enables the possibility of a data-driven prediction model of
TBM performance. This study develops models for predicting
the TBM operation parameters based on the Long Short-Term
Memory (LSTM). Given the initial operating parameters for a
short period of time, the model can predict some future
interpolating points of these parameters in the driving cycle.
The automatic driving of TBM can be achieved by updating the
predictions with the most recent parameter series.
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I. INTRODUCTION

Since my undergraduate major 1is underground
construction and engineering, various tunneling techniques,
such as TBM, are familiar to me. Tunnel Boring Machine
(TBM), which known as a "mole", is a machine used to
excavate tunnels with a circular cross section through a variety
of soil and rock strata. Fig. 1. shows the construction of a
tunnel by using TBM. More than one hundred sensors
installed on the TBM record parameters every second. Among
all these parameters, rotate speed of cutterhead N, advance
speed V, total thrust F and cutterhead torque T are most
important. Generally, in a driving cycle, the operator makes
adjustment about the state of surrounding rock mass and TBM
according to F and T. Then, N and V will be adjusted
accordingly based on the operator’s experience.

Fig. 1. Tunnel Boring Machine (TBM) Tunneling

It is a challenge for anyone to operate a TBM. Machine
learning makes it possible to use huge amounts of historical
data to aid operators of TBM. The study is about to drawing
the whole curves of three parameters V/, F and T (the change
in N is abrupt) with their initial series given. The main model
in the study takes sequence and returns sequence. Specifically,
the inputs are V, F and T series (timestep X 3) in the initial
period and the outputs are V, F and T series (timestep2 X 3)
in the future.

II. RELATED WORK

There have been some works on the prediction of TBMs'
operating parameters. In general, the methods for TBM's load
prediction can be grouped into three categories: empirical
methods (combined with experiments) [1,2], rock-soil
mechanics methods [3,4]and numerical simulation methods
[5]- The empirical methods, like many engineering standards,
can only guide the operation of TBM in a general direction.
The rock-soil mechanics methods need certain geological
survey data which is not available everywhere. Compared to
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traditional numerical simulation methods like multiple
regression model, models armed with machine learning
techniques can give better prediction of TBM operation data,
like [6] uses a support vector regression model for predicting
tunnel boring machine penetration rates. For prediction related
to time series such as the report discusses, deep learning, a
subfield of machine learning can play to its strengths. [7]
established a model based on LSTM to predict tunneling
parameters in the steady phase based on the data in the rising
phase. [8] established a global attention mechanism based
long-short-term-memory (LSTM) network to model the cyclic
TBM construction data and make predictions of lithology at
the tunnel face. [9] used three kinds of recurrent neural
networks (RNNs), including traditional RNNs, long-short
term memory (LSTM) networks and gated recurrent unit
(GRU) networks, to deal with the real-time prediction of TBM
operating parameters based on TBM in-situ operating data.
[7,8,9] show RNN and its variants are powerful in dealing
with the TBM operation data. The object of the study is like
[9]. The difference is that [9] used the parameters of the first
5 seconds to predict the parameters of the 6th second and
update, however, the report uses the parameters of the first 30
seconds to predict the whole series of parameters in the future,
which is more helpful to TBM operators.

III. DATA AND FEATURES

In my junior year (2019), I am lucky to have access to a
TBM dataset. China Railway Engineering Equipment Group
Co., Ltd. The dataset is collected in the Jilin Yinsong Water
Diversion Project, China. The TBM performed effective
tunneling for 728 days, and TBM data were collected at a
frequency of 1 Hz. In total, 120 GB of monitoring data were
collected. The data included 199 parameters, such as the
cutterhead torque and total thrust. The TBM tunneling time
series data are usually stored in the form of continuous cycle
with the on-off of the TBM machine.
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Fig. 2. A complete Cycle of TBM Tunneling

Generally, a cycle can be divided into three phases roughly
(Fig.2.). In the first phase (T1+T2), the cutter powers on and
the TBM advances freely. In the second phase (rising phase,
T3), the cutter contacts the surrounding rock. So, this is a
transition period, and many parameters will change violently.
This stage will continue no more than 150 seconds. In the third
phase (steady phase, T4), the TBM sustains a stable
relationship with surrounding rocks. This phase, lasting
several minutes, is a focus in tunnel construction. At this phase,
many parameters have a stable value.



A. Preprocess

Raw data 1s stored in TXT files in days (728). The daily
file contains a varying number of tunneling cycles (Fig.3.).
The driving cycles can be achieved from the daily TXT files
based on the condition that none of the key parameters
(N,V,F,T) are zero. At the same time, according to the rated
values of the TBM (N, qteq=7.6 tmp, Vy4teq =120 mm/min,
Fratea=23260 kN, T, qt0a=8410kN-m), exclude outliers.

Thrust of TBM (kN)

Fig. 3. Several Cycles in a Daily Record

Under ideal conditions, the drilling footage of a complete
TBM tunneling cycle is 1.8 m (more than 1000 seconds).
However, the footage of each cycle considerably varies due to
unexpected events in the tunneling process, such as
unfavorable geological conditions. This study takes the period
of a single tunneling cycle greater than 600 seconds as the
extraction condition to avoid inaccurate data collection caused
by the short TBM tunneling period. In the end, a total of 10256
tunneling cycles were obtained to validate lithology prediction.
In the experiment, only 1067 tunneling cycles are used due to
time constraint.
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Fig. 4. The Result after Preprocessing

Basically, the operator will accelerate TBM at the very
beginning. The velocity will rapidly fall when the cutterhead
starts to interact with the tunnel face closely and then the key
parameters start to raise gradually. It is generally believed that
the data starting from this time, i.e. in raising phase and steady
phase, can reflect the interaction relationship between
operator, machine and rock mass. For the purpose of the study,
1.e. predicting the whole curve with the initial sequences given,
it is a pivotal preprocess to find the starting time of raising
phase t,4;;. and stable phase £y 45, and also the steady
values of key parameters V;, T and F;. In the research, the
following algorithm is implemented to find these.

Algorithm: Extract Raising and Steady Phase from a Cycle

1: Calculate the stable values of I}, T; and F; based on
the fact that in a cycle most values fluctuate around the
stable value. The frequency distribution histogram is used
here.

2: The start time of stable phase tg.qp is identified
when the total thrust F begins to be stable (the gradient is
less than some tolerance).

3: In velocity sequence, find corresponding time t, of
the peak with the greatest prominence from the beginning
to stable phase. Here, scipy.signal.find peaks in python
library is used. Find the corresponding time of minimum
of velocity from ¢, to tsqppe as the start time of raising
time &, 4jse-

In order to improve the accuracy of the prediction,
Savitzky—Golay filter is used here. A Savitzky—Golay filter is
a digital filter that can be applied to a set of digital data points
for the purpose of smoothing the data, that is, to increase the
precision of the data without distorting the signal tendency
[11]. Scipy.signal.savgol filter in python library is imported
when implementing. The length of the filter window is 81 and
the order of the polynomial used to fit the samples is 4 based
on the multiple attempts.

One example after preprocessing is shown in Fig.4. There
are 3 subplots representing torque (T, kN - m), total thrust
(F,kN) and velocity (V, mm/min) versus time (t, second),
respectively. In each subplot, the fluctuating purple line is the
original cycle data split from raw dataset. The stable black line
is the data smoothed. The left red point is the start point of
raising phase and the right cyan point is the start point of stable
phase. The bolded green line is the stable value of each
parameter. Normalize all parameters via dividing by their
rated values, 1.e., substitute V/Vyrqrea, F / Fratea @09 T/ Tratea
for V,F and T. The V,F and T sequences in the raising phase
and their stable values after preprocessing will be the dataset
for the deep learning later. The inputs and outputs will be
extended in the METHOD part.

IV. METHOD

A. LSTM Networks

The long short-term memory (LSTM) network, which was
proposed in 1997 [10], is a special variant of recurrent neural
networks (RNNs). RNNs provide a powerful tool for the tasks
of time-series prediction, because of the existence of loop
structure where the previous outputs of hidden nodes are used
to generate the response for the current input [9]. Fig. 5. Shows
the structure of RNNs. In this figure, %, is the input vector at

t time. ?lt is the hidden output vector at i-time. G, is the output
vector at t time. W, is the weight matrix between the hidden
output vector at t — 1 time and the hidden output vector at t
time. U, is the weight matrix between the input vector at
t time and the hidden output vector at ¢ time. V; is the weight
matrix between the hidden output vector at t time and the
output vector at t time.
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Fig. 5. The Structure of RNNs



Traditional RNNs exist vanishing gradient problems since
the multiple matrix multiplications involved. LSTM can solve
the vanishing gradient problems and get better performance in
long-term time series prediction. The diagram in Fig. 6. is a
typical LSTM unit. The key to LSTM is the cell state (C;). In
the diagram, vector concatenation is represented by the
merging arrows (+), while vector duplication is represented
by the forking arrows ().
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Fig. 6. The Structure of LSTM

The gates in LSTM have been designed to remove or add
information to the cell state. They are a composition of a
sigmoid layer and multiplication operations. The sigmoid
layer output 1s a value between 0 and 1, which indicates the
weight of information flow. The LSTM achieves the control
and protection of the cell state through these three gates. The
forget gate decides what information will be disposed of from
the cell state. This transfer can be defined as:

ft = U(Wf [hep xe] + bf) (1)

where ¢ is the sigmoid activation function, Wy is the
weight of the connections between neurons, h;_; 1s the output
of the last neuron, x; is the input of the current neuron, and bf
is the bias of neuron. The forget gate determines the effect of
the input on the current cell state, and the preservation and
discarding of the previous cell state.

The input gate determines how much new information will
be stored in the current cell state. This transfer can be defined
as:

ip = oW [he—y, x] + by) 2
C; = tanh(W¢ - [R—q, %] + b¢) 3

where tanh is the activation function, and b; and b, are the
biases of the neural network. The sigmoid layer decides which
value will be updated, while the tanh layer creates a new
vector € which can be added to the cell state. After completing
the above steps, the updated cell state can be defined as:

Co=fr*Crq+i,*C; 4

where * 1s an element-wise production operation. In the
updating procedure of the cell state, the old cell state C,_, is
multiplied by f; to forget some information, and then, the new
candidate value i, * C, from the input gate is added. After the
cell state has been updated, the output gate will output the
current cell state. This transfer can be defined as:

oy = oW, - [he—q,x] + b,) Q)
h; = o, x tanh C; (6)

In summary, the above three gates are composed of
sigmoid and tanh neural network layers, which help in the

selection of effective information. The above description
mainly refers [7].

B. Prediction Method

The object of the study is to achieve predicting the whole
curve of V,T and F in a tunneling cycle with the initial
sequence given and updating the curve with TBM advancing.
Define 7 as the length of sequence of inputs, which is always
known as the time steps of inputs, n as the length of the whole
sequence. An intuitive way to do this is setting inputs to initial
sequence and outputs to the remaining/future sequence and
training the mass samples with LSTM or other edge tools. One
training sample packing inputs and outputs together can be
written as follows:

({xll xZI ,x,}, {x‘r+1' x1:+2' e xn})

Where x;(i =1,---,n) means the parameters vector at i
time, i.e., x; = [V;, T;, F;]T. This method is feasible, but the
results of prediction are not satisfying. Another method is
predicting step-by-step like [9]. Training samples for an RNN-
based predictor are formed as follows:

({xlf X2y e ,x.[}, x1:+1);

({xz, x5, o) Xop1} Xe42);

({xn—rf Xn—t+1r s xn—l}ﬁ xn);

The performance of this method is good, but it can only make
a prediction for next time (or a certain time in the further).
Operators cannot see the long-term trends with this model.

1) Future interpolating points prediction model

To solve the problem, new outputs for an RNN-based
predictor are explored in the study. The training samples can
be written as follows, which is the same as common samples
in sequence-to-sequence (seq2seq) problem:

({xl,xz,...,xT},{xtu).xtu»---.xtm });
al 2 stable

({XZ, X35 ey x‘r+1}r {xt(z), xt(z): Ty xt(z) })!
1 2 stable

Where {xt(l),xt(l),‘”,xt(l) } is a sequence formed by
1 2

stable
several points from 7-time to the start time of stable phases

tstapie In a tunneling circle. The corner mark (1) in the
sequence means it is the first sample. Define the number of
elements 1n the sequence as 77. The corresponding time vector

T
of the sequence [tl(l),tgl),---,ts(:;ble] can be formed by
t(l) t(l) i

evenly inserting 77 points between 7 and tg, ;.. (torapie 1
excluded since it will be predicted separately in the following
model) and the sequence can be established accordingly. The
number of training samples that can be extracted from one

cycle depends on 7, ts(: ; pie @nd 7. The input of each sample in
the model is at — by — 3 matrix (each column is composed
by corresponding T,F,V). The output is a 1 — by —3
matrix (each column is composed by corresponding T, F, V)
The model can be easily interpreted from the interpolation
perspective. With some points given, one can see the trend of
a curve by linking the points. The model just predicts some
interpolating points in the future.

2) Stable points prediction model



Another model used in the study is predicting the start time
of the stable phase t,p;. and the stable values V;, T; and F; of
a tunneling cycle. For one tunneling cycle, the corresponding
training samples can be written as follows:

Bl wils, 3wl @ T ;
({T1 YXT 3 Kpen 5 K },{tstable,xtm }),
stable

T.nT.nT. . oT (2) T .
({Tz X33 X355 Xpaa ks {tstable' X,@ }),
stable

1) 1) ,0
Where XT(;)M = [Ts( )'P;'( 2 Vs( )]: 7§ = [ty tes o s tprea].
stabie

The reason importing time index 7! of inputs here is to
improve the regression performance of the start time of stable

phases ts(ngb 1e> Which is proven by trails in experiments. So,
the input of each sample in the first model is at — by — 4
matrix (each column is composed by t, Ty, F;, V;). The output
is a 1 —by—4 row vector (tsapre Ts, FyVs) . With
tstapte and x,, .~ predicted, the time vector

[tl(l), tgl), U ts(:;bl e] can be calculated. Then use the model
mentioned before to predict {x @), X @),**,x 1) }. Thus,
tl tz tstable

the whole future curves of V, F, T parameters can be plotted.

V. EXPERIMENTS

In this section, the experimental results of the proposed
LSTM predictors for TBM operating data are shown. All
experiments were processed by using Keras in a computer
with AMD Ryzen 9 5900HX with Radeon Graphics 3.30 GHz,
32 GB RAM. Two kinds of metrics: the root of mean square
error (RMSE) and the mean absolute percentage error (MAPE)
are used to evaluate the predicting results. RMSE and MAPE
can be expressed as follow respectively:

MAPE = 20y7_, o, ™
T Yt
RMSE = \/},ZLlII?t —y:ll3 (®)

where J, and y, stand for the prediction and the real values
for input x;.

Divide 1067 tunneling cycles into 747 training cycles, 160
validation cycles and 160 test circles (75%:15%:15%). The
training samples, validation samples and test samples can be
extracted from the corresponding cycles according to the
method in the last section. After trying many trials with
different parameters, the sampling parameters are determined.
The length of raising phase/time steps of input 7 equals to 30.
The number of future interpolating points 7 equals to 9. Since
the start time of stable phase of each cycle is different, the
number of samples extracted from each cycle is different, set
the max number of samples extracted from each cycle equal
to 100 to make sampling more uniform. 51962 samples,
including 36770 training samples (71%), 8246 validation
samples (16%) and 6946 test samples (13%), are extracted for
experiments.

A. Stable points prediction

After trying many trials with different hyper parameters,
the structure of regression model of predicting the start time
of stable phase tyqp and the stable values x;, .. is
determined, which is shown in Fig. 7. The model is established
by stack one LSTM layer with 50 neurons, one LSTM layer

with 50 neurons, one Dense (fully connected neural networks
mentioned in our lectures) with 50 neurons and one Dense
with 4 neurons one by one. The loss function is mean square
error, and the metrics are RMSE and MAPE . The optimizer is
Adam with 0.01 learning rate, which works well in practice
and compares favorably to other stochastic optimization
methods [12]. Before fitting the model, the time index of the
input and the start time of stable phase are normalized via
dividing by 500 to decrease their weights in loss function.

mput: | [(None, 30, 4)]
Istm_input: InputLayer | float32
output: | [(None, 30, 4)]
mput: | (None, 30, 4)
Isto: LSTM | float32
output: | (None, 30, 50)
nput: (None, 30, 50)
Istm_1: LSTM | float32

output: (None, 50)

mput: | (None, 50)
(None, 50)

float32

l

float32

dense: Dense

output

mput: | (None, 50)

dense_1: Dense
(None, 4)

output:

Fig. 7. The Structure of Stable Points Prediction Model

Fit the model with 500 of batch size. TABLE I. shows the
evaluating results on testing set after 15 epochs. Comparing to
the benchmark which means regarding the average value of
outputs of training set as the outputs of testing set, it can be
found that all output parameters outperform than benchmark.
The error of the stable value of thrust F; is relatively small,
which makes sense since we choose the start time of stable
phase of thrust as t . at first based on its intuitive stability.

TABLE L. EVALUATING RESULTS OF MODEL [
Lstable T F; Vs
Unit - kN -m kN mm/min
Threshold 500 8410 23260 120
RMSE,pymn 1115 1810 26515 1.5
RMSE 74.4 392.5 1255.0 8.0
MAPE pyq, (%) | 474 14.6 169 15.6
MAPE (%) 26.1 11.2 6.9 10.4

B. Future interpolating points prediction

The next step is to establish the future interpolating points
prediction model. The structure of regression model of
predicting the future interpolating points

{x.@),x @, ,x @ }1isdetermined, which is shown in Fig.
tl Fz tstable . . .
8. In this model, an encoder-decoder LSTM is used, which 1s

a model comprised of two sub-models: one called the encoder
that reads the input sequences and compresses it to a fixed-
length internal representation, and an output model called the
decoder that interprets the internal representation and uses it
to predict the output sequence [13]. The model is established
by referring [13] too.



mput: | [(None, 30, 3)]
output: | [(None, 30, 3)]

float32

Istm_4_input: InputLayer

T Pr— mput: | (None, 30, 3)
B S at32
- output: (None, 100)
nput: (None, 100)

’ repeat_vector: RepeatVector | float32

output: | (None, 9, 100)

nput: (None, 9, 100)
Istm_5: LSTM | float32
- output: | (None, 2, 50)
nput: (None, 9, 50
tune_distributed(dense_d): TimeDistibuted(Dense) | float32 o e )

output: | (None, 9, 100)

l

time_distributed_1(dense_5): TimeDistributed(Dense)

mput: [ (None, 9, 100)
output: (None, 9, 3)

float32

Fig. 8. The Structure of Future Interpolating Points Prediction Model

Fit the model with 500 of batch size. TABLE II. shows the
evaluating results on testing set after 15 epochs. Similarly, use
the mean values of outputs of training set as benchmark. We
can find the performance is acceptable from the from an
engineering application perspective.

TABLE 1L EVALUATING RESULTS OF MODEL II
T F 4

Unit kN -m kN mm/min
Threshold 8410 23260 120
RMSE can 716.489 2583.985 15.76
RMSE 415.467 1073.065 9.074
MAPE,, 0n (%) 0.375 0.194 0.361
MAPE (%) 0.144 0.07 0.187

In this model, future interpolating points 7 is an important
parameter. Fig. 9. shows the reason n = 9. Select different
numbers of future interpolating points and rerun the model.
Other hyperparameters can be selected in the same way.
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Fig. 9. Select the Number of Interpolating Points

C. Whole future curve prediction

Having the start time of stable phase ts.,p , the stable
values of parameters T, F;,V; (from Model I) and the
coordinates of future interpolating points (from Model II), the
next step 1s to draw the whole circle curve and update it real
time. Take the prediction of thrust from test set for example.
Fig.10. shows one result of thrust sequence prediction in the
beginning. The green curve represents the original 30 seconds

thrust sequence. The red curve represents the future trends
predicted based on the original sequence.
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Fig. 10. The Result of Thrust Sequence Prediction (Start)

Fig.11. shows the prediction results of whole thrust curve
when we update it lively. From these two figures we can see
that for this test sample, the method in the study can give
relatively good prediction of the whole curve intuitively.
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Fig. 11. The Result of Thrust Sequence Prediction (real-time update)

VI. CONCLUSION AND FUTURE WORK

The report proposes a method for predicting the future
trends of sequences in the framework of deep learning (LSTM)
and implements the method based on TBM operation data.
The method can give relatively accurate results for some
future points quantitatively (Experiments Section part A) and
predict the future trends well for large part of test samples
qualitatively (Experiments Section part B). Some algorithms
in the report like extracting raising and steady phase from a
cycle can also been used for reference when dealing with some
periodic data.

Long-short term memory (LSTM) networks gives
moderate prediction results when deal with sequences
prediction in the study. More deep learning method can be
tried based on this, such as Gated Recurrent Units (GRU),
CNN-LSTM, etc. The method proposed (achieve auto-drive)
can only drive as an operator at most. In the tunnel
construction field, there is no uniform standard to evaluate
what is the best driving cycle, thus, no label for driving cycles.
Some unsupervised learning tools or reinforcement learning
might need be used for the breakthrough in the subject.



VII. APPENDICES

Code is submitted in gradescope.
The elaborated edition codes (updating):
https://github.com/J-1-n-p-u/CS229---project---code.git
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