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Abstract—With increasing life expectancy, the disease
burden posed by aging has become increasingly salient.
Individuals may vary in their rates of aging due to genetic and
environmental factors, inspiring the concept of a biological age,
which is related to, but distinct from, chronological age (years
since birth). To contribute to an understanding of the
biological basis of aging, we apply regression techniques to
predict the age of patients from gene expression data and
thereby uncover patterns of gene expression associated with
age. Our key innovation is to map individual gene expression
values into a lower-dimensional pathway score space,
representing the level of activity within expert-curated
biological gene sets. Due to an emerging understanding of
aging as occurring at the level of pathway dysregulation, we
hypothesized that models trained on pathway activity scores
may outperform models trained on individual gene expression.
With a leave-one-out cross validation evaluation scheme, our
pathway-based linear regression models performed better than
the gene-based models (R* = 0.68 vs R” = 0.48) and a shallow
neural net (R%=0.573) . These results suggest that the pathway
scores are a viable feature for prediction of age from
transcriptomic data and provide support for the pathway
dysregulation hypothesis of aging.
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I INTRODUCTION

Aging can be defined as “intrinsic, progressive, and
irreversible  deterioration of virtually every bodily
function”.! Dramatic increases in life expectancy in modern
times have exposed age-associated diseases, which
contribute a significant burden in the US healthcare system
($135 billion).* Understanding the biological basis of aging
i1s a central problem in modern biology and may provide
insights into anti-aging treatments to reduce age-related
illnesses.

Increasingly, researchers are realizing that chronological
age 1s an inadequate predictor of senescence due to
heterogeneity in aging rates across individuals. Instead, a
biological notion of aging would allow for quantification of
age based on expression of age-associated genes or other
biomarkers. One approach to determining the biological
determinants of aging is to train machine learning
algorithms to predict chronological age from gene
expression data. Genes that are highly predictive of age
might then be causally linked to aging-related physiological
changes.

Therefore, we built a linear regression model that could
predict an output of chronological age from
gene-expression-based features. We also aimed to analyze
feature importance to understand the biological
determinants of aging. We trained several models with
different inputs. Our baseline model used inputs of all genes
for which we had expression values. We obtained improved
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correlation of predicted and observed ages by feature maps
to the raw gene expression data to produce pathway activity
scores. This explicit feature engineering reduces dimensions
by a factor of approximately 34 and performs better than a
regression model with automated feature engineering via a
neural network.

11. RELATED WORK

A. Predicting age from gene expression

Recent advances in RNA-sequencing (RNA-Seq)
technology have spawned an interest in predicting
chronological age from gene expression data. Fleischer et al
use gene expression data publicly available in Gene
Expression Omnibus (GEO) from healthy individuals of
ages ranging from 1 to 94 years old to train an ensemble of
linear discriminant analysis classifiers that successfully
predicts age with a median absolute error of 4 years using
normalized gene expression values as features.?

While Fleischer’s approach represents a key
advancement in the application of machine learning to
chronological age prediction, we have identified several key
limitations. First, a large body of research suggests that
biological aging occurs primarily at the level of pathways
(e.g., nutrient sensing, proteostasis, DNA repair) rather than
individual genes. As an example, perturbations of any gene
in the nutrient sensing pathway upstream or downstream of
the protein mTORI1 can have a similar effect on aging rate.
Secondly, in the large literature on prediction of complex
disease states from gene expression data, machine learning
classifiers trained on genetic-pathway-level activity scores
have outperformed models trained on expression of
individual genes.**® This is partly because reducing the
number of features increases robustness to individual gene
expression differences and because pathophysiology, like
aging, occurs at a pathway level. Pathway scores can
therefore be interpreted as a biologically-inspired feature
engineering technique that reduces the dimensionality of
transcriptomic data to prevent overfitting while capturing
the structure of age-relevant variation in the original data.

B. Feature mapping

Here, “pathways” consist of expert curated sets of genes
involved in a common biological process. Gene Ontology
(GO) 1s a hierarchical structure of pathways with annotated
gene functions.” The gene sets of interest are sets of genes
involved in biological processes. As an example, an
“inflammation” pathway would consist of a set of genes
encoding products that participate in inflammatory
processes.

A number of possible pathway score generation
algorithms (feature maps) have been developed, as
summarized and evaluated in Zhang et al.¥ We selected two



algorithms based upon their

computational efficiency.

interpretability — and

1) Enrichment scores as features

The first feature map is an adaptation of single-sample
Gene Set Enrichment Analysis (ssGSEA), a technique to
obtain a metric of pathway activity from a ranked list of
genes by expression level. Briefly, the algorithm produces a
Kolgomorov-Smirnov-like statistic (“enrichment score™) for
each pathway by iterating through the ranked list and adding
a “reward” every time a gene in the pathway is encountered,
and subtracting a “penalty” when the gene is not in the
pathway. The enrichment score is determined as the
maximum positive or minimum negative statistic obtained
while iterating through the list. If a pathway is upregulated
(activated gene expression) more than random expectation,
then the enrichment score is large and positive, because
many rewards are added for genes in the pathway before
non-pathway genes are encountered. If a pathway is
downregulated (deactivated gene expression), then its
enrichment score will conversely be large and negative.
Traditionally, the resulting enrichment score is compared to
a null distribution to determine a p-value. For our purposes,
we propose using the raw enrichment score for each
pathway as our feature. The ssGEA algorithm is well-suited
for feature mapping because it can be computed from a
single input gene expression vector (i.e., does not require a
comparison to a training set).

2) Aggregated pathway z-scores as features

The second feature map involves using gene sets and
calculating an activity score for each gene set from the
z-score of genes in that pathway, as was done in Lee etal.*
First, we calculate a z-score for each gene expression value
relative to the other samples. For each gene, we compute a
Pearson correlation statistic between each gene’s z-score
and patient chronological age. Then, for each gene set,
starting from the highest ranked gene, gene z-score vectors
are averaged to produce an output activity score vector until
the correlation of the activity score vector with age ceases to
increase. The average of the z-scores of the genes included
in the subset represents the activity score of the pathway.
Thereby, only a subset of genes in a gene set are used to
compute the activity score. As compared to enrichment
scores, this algorithm has the advantage of excluding genes
uncorrelated with age, thus reflecting a filter feature
selection strategy.” However, the z-score generation requires
comparison to all other elements in the training set and
thereby cannot be computed from a single input gene
expression vector.

111 DATASET

We used Fleischer et al’s gene expression data, in
transcript frequency per kilobase million (FKPM), which is
publicly available in GEO (GSE113957)2 The study
included data for 27,142 transcripts per individual from 133
healthy individuals, with ages ranging from 1 to 94 years
old. The ages are roughly uniformly distributed over this
age (Fig. 1). We analyzed the data for the influence of sex
and found no significant differences by this potential
confounds on PCA (data not shown). There were also 10
patients with Hutchinson-Gilford progeria syndrome
(HGPS), an early-aging disease. Z-score normalization for
each gene was only performed for “pathway z-score”
feature mapping, as described above.
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Fig. 1. Histogram of ages in dataset from Fleischer et al.

IV. METHODS

A. Feature mapping

In order to obtain pathway scores from our dataset, it
was first necessary to convert our feature names from
RefSeq transcript IDs to Entrez Gene IDs, which are
conventionally used in curated GO pathway sets. This
mapping was performed using a standard UniProt dictionary
to generate 16,609 genes as features.'’ The number of genes
is lower than the number of original transcripts because not
all transcripts correspond to protein-encoding genes with
Entrez IDs and because multiple transcripts can map to the
same gene, in which case we aggregated the expression
values into a single column by summing across all
transcripts.

We obtained single-sample GSEA (ssGSEA) enrichment
scores using the ssGSEA function of the GSEApy package."
Subsequent models were trained with these enrichment
scores as features for 2,286 pathways. We implemented the
algorithm for obtaining pathway z-scores as features
according to the pseudocode provided in Lee et al (as
described in the Related Works Section), resulting in 4,154
pathway scores.* Pearson correlation values were obtained
using the stats module from scipy. Pathway activity scores
were used as features in downstream modeling.

B. Data visualization with Principal Component Analysis
(PCA)

PCA provided a readily interpretable means of
visualizing important patterns of variation in our
high-dimensional data set in a lower-dimensional space.
Briefly, PCA works by rescaling all features such that they
have a mean of zero and variance of 1. Then, we find unit
basis vector u for a new subspace such that the projection of
the original data onto the basis vector maximizes the
variance of the projected data, by optimizing the following
equation subject to ||u||, = 1, as shown in Fig. 2.!?

Fig. 2. Equations for finding the basis vector in principal component
analysis'. u is the unit basis vector and x? is a sample in the original
data.

The solution to the above constrained optimization
problem is the first eigenvector of the covariance matrix of
the data. To obtain a two-dimensional subspace, we selected
the first and second eigenvectors of this matrix as the



horizontal and vertical axes of our lower-dimensional
subspace. Data are then projected onto this subspace by
computing their projections onto the basis vectors u; and u;,
The fraction of the variance explained by each principal
component is computed as the ratio of its corresponding
eigenvalue to the sum of all of the eigenvalues in the
covariance matrix.

We performed PCA on the gene expression data and
transformed pathway features with the PCA function from
decomposition in the sklearn package, with 2 principal
components. We plotted the dimensionality reduced data
with matplotlib and visualized patterns of variation with age
with the color map function.

C. Building ordinary least squares regression models

Using the sklearn package," we fitted an ordinary least
squares (OLS) model to each of our three sets of features:
(1) gene expression for 16,609 genes, (2) GSEA enrichment
scores for 2,286 pathways, and (3) aggregated z-scores for
4,154 pathways. OLS works by finding the weight vector w
that minimizes the squared deviation of the predictions (Xw)
from the labels y according to the equation in Fig. 3. The
coefficient of each feature from w is used to compute feature
importance for models with pathway scores as features.

min || Xw — g3

Fig. 3. Optimized loss function for linear regression for sklearn.

With 133 training examples, training a model on the full
set of features would result in an underdetermined regime
vulnerable to overfitting. To reduce the model complexity,
we applied multiple filters. First, as done in Fleischer et al*
we restricted analysis to genes with at least one sample with
an expression level greater than 5 FPKM and a fold change
of at least 5 FPKM between any two samples. These filters
address the high degree of stochastic variation for low level
read counts in RNA-Seq and ensure resulting genes have
biologically significant variation, respectively. Then, for
each respective model, we applied filter feature selection to
select the top 500 features by mutual information with age
using the SelectKBest model in feature selection in
sklearn >

D. Regression with neural networks with one-hidden-layer

Our GSEA and aggregate z-score feature maps represent
feature engineering based upon domain knowledge. An
alternative approach to explicit feature extraction is to train
a neural net, which learns salient features automatically.
Using the keras library of the tensorflow package, we
trained a neural network with a single hidden layer with 500
neurons; the number of neurons therefore corresponds to the
number of engineered pathway features selected from our
maps. The single hidden layer of our neural net accepted all
16,609 genes as inputs, then produced a rectified linear unit
(ReLu) activation for each of the 500 neurons. The outputs
of this hidden layer serve as features for the final layer of
the model, which maps R**® — ' with a linear activation
function. We trained over 100 epochs with a batch size of
10, with a loss function of mean absolute error. Model
parameters for each layer are learned to minimize mean
absolute error using the stochastic gradient descent-based
Adam algorithm with a standard backward propagation

approach. We visualized the loss function as a function of
the number of epochs.

E. Model evaluation

To evaluate our regression models, we performed
leave-one-out  cross-validation (LOOCV) with the
LeaveOneQur function of feature selection in sklearn.
LOOCYV involves holding out one sample, training on all
other samples, and predicting the label of the held-out
sample for every sample. This process generates a predicted
label for each sample. As compared with k-fold
cross-validation, LOOCYV is well-suited to our dataset with a
relatively small number of samples relative to the number of
features. In accordance with Fleischer et al, we use the
coefficient of determination (R?) between predicted and
observed ages as our primary metric of validity. R’
quantifies the fraction of the variance in actual age
explained by variance in our predicted ages, and is thus
well suited to the objective of understanding how variation
in gene expression contributes to aging.

V. REsuLTs AND DiscussioNn

A. Feature Comparison with Principal Component Analysis
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Fig. 4.

aggregate pathway z-scores as features, and (C) single-sample GSEA
(ssGSEA) enrichment scores as features. The scatterplots are colored
on a scale by age. Red points represent patients with the early-aging

Principal components 1 and 2 for (A) genes as features , (B)

condition Hutchinson-Gilford progeria syndrome (HGPS).
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Fig. 5. Scatterplots of linear regression predictions after leave-one-out
cross-validation versus true age of samples. (A) Ordinary least
squares (OLS) regression on the top 500 gene expression features (R?
=0.475), (B) Regression with a neural network with a single hidden
layer with 500 neurons (R*=0.573), (C) OLS regression with the
genes constituting the top 500 pathways from the aggregate pathway
z-score method, (D) OLS regression with top 500 features of the
aggregate pathway z-scores, and (E) OLS regression with the top 500
features from the single-sample GSEA enrichment scores as features.

Fig. 4 shows the results of PCA dimensionality
reduction when applied to our three types of features. The
first principal component (PC1) in all three cases is
correlated with age (i.e., R? between PC1 and age of about
0.60): older patients have the highest values when projected
onto this axis. The second principal component for ssGSEA
scores also captures some variation with age. These results
show that age is an important contributor to variation in
patterns of gene expression in the data, However, for the
PCA on the gene expression data (4A), there is poor
delineation between young and mid-aged patients, and
relatively little (15.02%) variation in the original data is
captured by the first principal component. In contrast, the
principal components for both types of engineered pathway
scores explain a higher fraction of the variance. Most
importantly, there is a clearer gradient from younger to older
patients along the entire length of PC1 for aggregate
pathway Z scores, and along the diagonal between PC1 and
PC2 for ssGSEA enrichment scores. The gradient in the
PCA plot shows that, by averaging out irrelevant stochastic
variation in individual gene expression, pathway scores are
better able to capture patterns of variation in gene
expression that correlate with age throughout the full range
of ages in our dataset.

B. Regression Model Performance

Fig. 5 shows the predicted age versus observed age for
all combinations of feature and model choice tested. As can
be seen, all models produce a significant (p < 0.05) positive
correlation between observed and predicted ages, but the
model trained on gene expression values alone has the worst
performance (Fig. 5A). Our two modes of feature extraction,
pathway aggregate z-scores and sSGSEA enrichment scores,
have the best performance, with an R”of 0.674 and 0.679,
respectively. This shows that grouping genes into pathways
appears to improve the ability of the OLS model to capture
transcriptional variation salient to age prediction. Since the
algorithm for selecting pathway aggregate z-scores involves
selecting genes within a pathway according to their
correlation with age (see “Related Work™), we also tested
the performance of a classifier trained on all the
non-aggregated z-scores of genes selected to compute
aggregate z-scores. The resulting classifier (Fig. 5C)
performs worse than the aggregated scores (Fig. 5D),
showing the utility of aggregating z scores into pathways.
The improvement between Fig S5C and 5D specifically
shows the utility of mapping the gene expression values into
features rather than just subsetting the genes involved in the
pathways as features directly.

Finally, the neural network regression model
outperformed training on genes alone, but performed worse
than either of our pathway models. This suggests that, at
least compared to a shallow and computationally efficient
neural net, biologically inspired feature extraction works
better than “automated” learning of features through
neurons. Moreover, explicit feature extraction through



pathway scores retains biological interpretability, which is
lost in training the neural net.

C. Feature Importance of Pathways in OLS Regression
Models

We extracted the most important features in the OLS
regression models trained on pathway enrichment scores
and aggregate pathway z-scores. Within the top 25 features
of both models, ranked by absolute value of the coefficient,
several pathways with known contributions to senescence
and aging appear, including “regulation of reactive oxygen
species metabolic processes”, “autophagosome assembly”,
“regular of TORCI1 signaling”, and “interleukin beta-1
production”. These pathways are significant as they involve
the major hallmarks of aging curated by biologists."*

VI CoONCLUSION AND FUTURE WORK

In this paper, we have shown that regression models
trained on scores representing biological pathway activity
outperform models trained on gene expression data for
individual genes as features. This work has several key
implications. First, pathway score algorithms represent a
viable feature map to reduce the dimensionality of
high-dimensional gene expression data while preserving
patterns of variation relevant to aging. In the context of the
previous application of these methods to binary
classification tasks (disease prediction), it appears likely that
pathway scores can broadly enhance the predictive power of
machine learning algorithms in bioinformatics while
retaining biological interpretability. From a biological
perspective, our work is significant in that it supports the
hypothesis that aging occurs primarily at the level of
pathway (as opposed to individual gene) dysregulation.

A major future direction of the work includes expanding
the data sources that we train our models on. We currently
used a dataset of transcriptomics of fibroblasts; however, the
gene expression signatures of aging likely vary from cell
type to cell type. Therefore, in the future, we would like to
train different models by cell type to understand
cell-specific determinants of aging. Additionally, we could
use a stacked regression to combine cell-specific models
and compare performance against models trained on
fibroblasts. Moreover, the pathways-based approaches can
be applied to characterize similarities and differences in the
determinants of aging across species. We plan on applying
our approach to mice and comparing performance to models
on humans as a potential way to understand common aging
pathways between mice and humans.

CONTRIBUTIONS

Rishabh and Yash pair-coded each element of the project
and contributed equally to the data preprocessing, model
building, and model evaluation. Rishabh and Yash wrote the
paper together. Yash focused background research on
machine learning methods in bioinformatics, while Rishabh
focused on biological underpinnings of pathway
dysregulation in aging.

CODE AND DATA AVAILABILITY

Data and code available on GitHub.
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