1 Introduction [0.5 pages]

Wine is both an everyday and luxury good with both subjective and quantitative
properties. Many aspects of wine can be described as a matter of fact (e.g.,
white or red, sparkling or not, origin). But wine reviewers and sommeliers find
employment due to the fact that an astounding variety of wines exist and wine
preferences, of course, depend on one’s taste. So if one was to enjoy a red wine
from California because it tasted like cherries, blindly recommending another
California red wine would be useless if it were to taste like cedar. Since much
of the wine recommendation systems are currently built around quantitative
analyses, I am aiming to build an app which can recommend wines to users
relying almost entirely on subjective descriptions. The app relies on a dataset
of ~ 120,000 unique wine reviews scraped from Wine Enthusiast Magazine,
a leading wine publication with respected critics writing about wines from all
around the world. I use several NLP techniques to quantify the text data. I
then use a K nearest neighbors algorithm to predict other similar wines in the
dataset. I also use the kmeans algorithm to cluster the wines. This allows us
an opportunity to extract the most meaningful words in each cluster i.e., find
what distinguishes each cluster of wines from the others. This could give us
meaningful and unexpected insights into why certain wines may taste or feel
similar.

2 Related work [0.5 pages]

As mentioned before, there are multiple approaches to categorizing and recom-
mending wine. A previous CS229 paper used the actual chemical qualities of
wine ! which is somewhat similar to this approach ? by Ewelina Osowska. An
approach I find especially intriguing is a text-based analysis by Roald Schuring
3. I am aiming to use a combination of empirical data and a text-based approach
to most accurately capture the nuance of the problem.

Additionally, Vivino, which markets itself as the “most downloaded wine
app” 4 uses both quantitative data and a user’s review to recommend wine to
the user. However, several internet discussions raise some potential issues. ® ©
Namely, these are that the reviews on Vivino are sourced entirely from users
on the app, which is not necessarily conducive to meaningful or informed data.
Although one could argue this makes the recommendation more democratic, it

«“

IModeling Wine Quality from Physicochemical Properties http://cs229.stanford.edu/
proj2019aut/data/assignment_308832_raw/25895690.pdf

2Clustering of wines - flat, hierarchical and fuzzy algorithms https://
rstudio-pubs-static.s3.amazonaws.com/474170_bce84d98324947f2ba9%e4416b6a21465.
html

3Wine Embeddings and a Wine Recommender https://towardsdatascience.com/
robosomm-chapter-3-wine-embeddings-and-a-wine-recommender-9fc678f1041e

4https://www.vivino.com/about

Shttps://www.reddit.com/r/wine/comments/iod3oe/what_is_the_deal_with_vivino_
why_is_it_popular/

Shttps://www.reddit.com/r/wine/comments/4mm16q/thoughts_on_vivino/

might also lack the insight of an expert opinion which my model incorporates.
The next is that Vivino may have an economic incentive to recommend certain
wines over others since their business model is at least partially reliant on selling
wines to those using the app.

3 Dataset and Features [0.5 - 1 pages| (Applica-
tion Projects Only)

The dataset I use includes over 120,000 wine reviews from Wine Enthusiast. T
found the dataset on Kaggle. ” Each row contains the name of the wine, the
review from the magazine’s critic, the wine’s origin, the grape varietal(s), and
other information such as the price and more specific details on where the wine
was produced. An example from the dataset is given below:

Title | Description

Nicosia 2013 Vulka | Aromas include tropical fruit, broom, brimstone

Bianco (Etna) and dried herb. The palate isn’t overly expres-
sive, ...

As shown, I have chosen to select solely the review (usually ~ 3—4 sentences)
as the raw data for the model. This was a design choice taken for several reasons.
First, this project is intended to explore the utility of using text-based data to
provide insights on wine. Second, some of the other fields of data such as the
specific wine-growing region or price were incomplete, and omitting the examples
which did not include these fields may have unintentionally skewed the data.
Every example in the dataset included the review.

To preprocess the data, I had an idea that I would want to extract tasting
notes such as blackberry, tannic or purple. To try and isolate the most im-
portant and intuitive data from the texts, I removed all numbers and stopwords
(sourcing the list of stopwords from the NLTK module). Then I used the porter
stemmer algorithm from NLTK to normalize the text by removing the suffixes
of words. This allows us to find common sentiments in closely related words
such as purplish & purply. Consider an arbitrary review as follows:

A Southern-Rhone style blend of 50% Grenache, 47% Syrah and 3%
Petite Sirah from a single vineyard on Mount Veeder. It’s
‘‘Estate’’ in that the vineyard is winery-owned, but the
winemaking happens elsewhere, so it’s technically not. Smell and
taste deep, dark black and blueberries with allspice, black
licorice, cola and smoked red meat back-ups. Strong wine, with
firm, fine tannins and a small explosion of flavor as it sits in
your mouth. Longtable waits almost five years after harvest to
release The Gathering so it’s ready. It’s sort of ready...it’1ll
start peaking in 2020 is my guess.

"https://wuw.kaggle.com/zynicide/wine-reviews

After preprocessing and normalization we get the less readable but hopefully
more useful:

southern rhone style blend grenache syrah petite sirah single
vineyard mount veeder estate vineyard winery owned winemaking
happens elsewhere technically smell taste deep dark black
blueberries allspice black licorice cola smoked red meat back ups
strong wine firm fine tannins small explosion flavor sits mouth
longtable waits almost five years harvest release gathering ready
sort ready start peaking guess

4 Methods [1 - 1.5 pages]

The first algorithm of note is TF-IDF Weighting. TF-IDF which is short for
term frequency—inverse document frequency is a method for turning text data
into vectors which can be used for our task. The algorithm gives terms that
occur less often more importance in determining the nature of the text at hand
by the formula

tf-idf = tf - idf (1)

where tf is the frequency of a term in a document and idf is a measure of how rare
a term is over the corpus. So a high information term will occur a lot in a certain
document but rarely overall. Next, I used the k nearest neighbors algorithm
to find a certain wine’s most similar wines in the dataset. This algorithm works
by finding the distance between an example and the other data. Then it returns
the k closest datapoints. In this case, since our features were tf-idf weights of text
data, the nearest neighbors should have similar descriptions and characteristics.
Finally, I used the K —means algorithm to cluster the data and find similarities
within clusters. As shown in class, the k means algorithm is given as:

1 : Initialize k cluster centroids randomly
2 : Repeat until convergence:

for every i: ¢; = min ||z; — p;||?
J

> e Hei = jhwi

Z?:1 Hei =5}
Ideally, then, the algorithm then finds the best assignment of clusters and cen-
troids to explain the variance in the data. However, since the algorithm is non
deterministic and depends on the initialization of the data, it can arrive at local
minima and should be run several times to ensure good performance.

for every j: p; =

5 Experiments/Results/Discussion [1 - 3 pages]

To tune the models, I needed to choose the number of clusters to choose for the
k-means algorithm. A common method of choosing this is elbow testing, which

is both a quantitative and qualitative method. This involves running multiple
trials on the data with different numbers of clusters and evaluating the model at
the conclusion of each trial while incrementing the number of clusters afterward.

Elbow?
109000 A
108000 A
2
£ 107000 -
o
a
x
u
3 106000 A
e
]
>
105000 A
104000 A
0 20 40 60 80 100 120 140 160
Clusters

The results of this are as follows:

Accordingly, I chose to use 50 clusters, as we start to notice diminishing
returns at this point. Qualitatively, results from the k-nearest-neighbors
algorithm were quite encouraging. When given a Cabernet Sauvignon from
California, the model returned four other California Cabernet Sauvignons and
one Cabernet Sauvignon from Washington. Even further, when given an Ore-
gon Pinot Noir, the model returned five other Oregon Pinot Noirs as its closest
neighbors. However, the model seemed less accurate when I fed less detailed
descriptions of wines. When given a short or incomplete review, the model
produced recommendations with significantly more variance, including recom-
mending red wines when given a white or sparkling wine. This indicates that
adding some quantitative data could boost the performance of the model. In
two dimensions, we can see the k = 50 clusters produced:

40 4

20 -

6 Conclusion/Future Work [1 - 2 paragraphs]

In conclusion, this approach is encouraging. The main drawback I noticed
was the difficulty in interpreting and evaluating the results produced by the
model. For example a labeled dataset would be much easier to evaluate as
I could more directly measure the accuracy of the groups. But I think the
approach is more engaging and intuitive than other methods. For example,
when I input several attributes of a hypothetical wine that I prefer such as
blackberry, black tea, cedar, tannic the program was able to recommend
several wines in the data which seemed reasonable.

7 References/Bibliography (No page limit)

From Sci-Kit-Learn: TSNE, KMeans, K Means, K Nearest Neighbors, TF-IDF
From Natural Language Toolkit: Stopwords, Porter Stemmer

