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Abstract—Communication is an important topic in AI that
has not received very much attention [1]. Hanabi is a cooperative
card game that requires effective communication between players
in order to achieve a high score, making it.a good model for
communication as a whole. In this paper, I address the problem
of accounting for errors in communication during Hanabi by
identifying mistakes using K-Means and the EM Algorithm. I
then test these models’ ability to increase performance against
an agent which frequently makes mistakes, both alone and in
combination with reinforcement learning. I found that all com-
binations of these techniques improved performance to varying
degrees in high-mistake settings without sacrificing performance
when the cooperator made few mistakes.

I. INTRODUCTION

While communication is an essential tool in everyday hu-
man life, the variety of signals a communication agent must
learn to interpret and respond with makes it a very challenging
subject in artificial intelligence [1]. In particular, training an
agent to properly identify and react to mistaken or erroneous
signals presents a fundamental liability given the fallibility of
any means of exchanging information. One domain in which
these problems can present themselves is in the cooperative
card game Hanabi.

In Hanabi, two (or more) players are given a hand contain-
ing five cards which all players except the one holding them
can observe. The goal of the game is for players to give each
other hints about properties of the cards, such as their color
and rank, in order to place them down in the proper order.
The full rules of Hanabi can be found at [2].

In this paper, I explore various techniques of mistake
detection and response in games played with error-prone
Hanabi agents. I provide as input to the Hanabi agents the full
observable board state at each turn (including the cooperator’s
cards, prior hints given, etc., but excluding the agent’s own
cards), which is the same information that any human playing
the game would receive. To restrict the scope of the problem,
the model’s output is simply an indicator for whether to treat
the cooperator’s prior move as genuine or erroneous.

I built separate models using K-Means and the EM algo-
rithm to predict the correct labels for each move. Then, I
built two classes of agents to act on these predictions: one
which took the predicted label at face value and one which
used reinforcement learning with value iteration to determine
whether to act on the labels. (I will go into further detail about
how these parts interact in the Experiments section.)

With all methods, if a move is interpreted as genuine, the
agent will play a move based its cooperator’s strategy, likely
using implicit information gleaned from prior moves. If it is
interpreted as a mistake, then the agent will still adopt its
cooperator’s hinting strategy but otherwise avoid acting on any
information not explicitly included in hints.

While I did a project on Hanabi in CS 221, the only pieces
that this report shares in common with that project is the
strategy that the agents I have designed are meant to play
against and some of the code I’ve modified from DeepMind
to run the games.

II. RELATED WORK

One past approach to crafting a Hanabi agent is to encode
agents whose strategies mimic what a human playing the game
may choose to do, with varying degrees of sophistication,
such as the strategies created by Hirotaka Osawa [3]. These
approaches generally make few assumptions about their co-
operator’s behavior, meaning they are not prone to playing
incorrect cards, but their limited hinting strategy makes them
prone to misinterpretation by many other agents.

Another approach to achieving high scores in Hanabi in-
volves hand-coding an agent with the specific purpose of
keeping track of the likely game state based on the entire
move history. These algorithms tend to be more complex
and specialized than the principles behind ones like Osawa’s,
although they often yield performance better than most human
players. One example of this approach is David Wu’s Fire-
flower bot, which utilizes long short-term memory (LSTM),
whose average performance in 2-player games is 2.5 points
shy of perfect [4].

A third approach to creating a Hanabi agent is to train
an agent to decode its cooperator’s actions with minimal
built-in guidance. While training agents to develop their own
conventions for communication is difficult using most tools
in Al, there has been some success in recent years with
deep multi-agent reinforcement learning yielding agents that
routinely secure perfect sores, something almost impossible for
humans. A pair of examples, both using Bayesian techniques
to deduce one’s own cards from the cooperator’s actions, are
[5] and [6].

One final approach is to create a pool of agents in order to
evaluate which has the best overall performance relative to its
peers, as in [7]. Here, the authors generate a wide variety



of candidate agents using different permutations of a rule
set and tweaking other behaviors such as risk aversion and
communicativeness. They then have each agent play against
all others to determine the one with the highest overall average.
Since agents in this method see a wide variety of strategies,
including many that are suboptimal, they should be more
resilient to games against mistake-prone agents, although it
is still not an explicit purpose of the paper to address that
problem.

III. DATASET AND FEATURES

The training data used in my model comes from 200 games
that my Standard Strategy with a 50% error rate played against
itself. The Standard Strategy is meant to mimic a simple
strategy that I've used in Hanabi, and it is set to have a 50%
error rate (meaning that % of its moves, rather than following
the rules of the strategy, are randomly generated). These games
are played in the DeepMind Hanabi Environment [8].

These 200 games contained a total of 3996 moves, for which
I saved 7 features and a label. The label took the value O if
the move was randomly generated, 1 if the move was not
random but did not carry implied meaning, and 2 if the move
was not random and did carry implied meaning. The seven
features, which I hand selected based on my knowledge from
playing the game, were based on simulations by an agent
of their possible hands. Specifically, at all times, each agent
keeps track of hints given to it. For example, it may know
that its leftmost card is blue. From this, it generates 50 hands
that it may have, meaning that in the previous example, one
simulation may have the leftmost card as a blue 1. Then,
for each simulated hand, the agent determines what move its
cooperator would have made if the agent had that hand and
records it. The results of these 50 simulations are used to
generate the features below.
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Fig. 1. Hypothetical Card Simulation

1) Proportion of simulated moves matching the coopera-
tor’s move

2) Proportion of simulated moves that are the most com-
mon move (e.g. if Play Card 1 occurred 5 times and

Play Card 2 occurred 45 times, then this feature would
be 45/(45 4+ 5) = 0.9)
3) Proportion of moves with the same type as the observed
move. (Types are Play, Discard, and Hint.)
4) Proportion of moves of the observed type which were
the observed move
5) Proportion of moves from the most commonly observed
type
6) Ratio of moves from the observed type to moves of the
most commonly observed type
The validation set was obtained by running 300 more games
using the same agent and recording the same features. In those
300 games, there was a total of 5677 moves recorded.

IV. METHODS
A. EM Algorithm

The EM algorithm allows for unsupervised learning of data
under a latent variable model. In this case, the latent variable
is whether the cooperator’s previous move was genuine or
erroneous. Since it would be expected that this distinction
would affect the distribution of the features, the EM model
is a good fit for this paper’s problem. Further, since in many
practical problems involving communication error it is difficult
to acquire labeled data, the unsupervised aspect makes it more
broadly applicable to similar problems.

In order to facilitate better convergence, I used a “semi-
supervised” approach in which a small number of data points
are given their proper labels. Since in this case we are hoping
for the model to pick up on particular clusters of points, this
also helps protect against any unforeseen trends in the data
changing the cluster assignments.

Given a point z(i), parameter 0, and set of latent variable
labels z(¥), the log-likelihood for 6 is given by

00) = log Y p(z®,29;0)
i=1 2(0)
The object of the EM algorithm is to alternately estimate
Qi(2) = p(z?|z; 6)

in the E-step and update 6 to increase the lower bound
on log-likelihood in the M-Step using Jensen’s Inequality.
Specifically, the M-Step consists of solving for

_ p(m(i), 2@, 0)
0 = arg max Q; 2 log ——————=
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In the semi-supervised setting, these formulas are aug-
mented using the supervised log-likelihood

ésup(a) = Z log p(‘%(i)v 5(1’); 0)
i=1
and the semi-supervised log likelihood becomes

Esemi-sup(e) = 6(0) + aéSUP(G)

for a hyper-parameter «, with the E-Step and M-Step updated
accordingly.



Then, predictions are made on a new point z using
arg min p(z, z; 6)
z

B. K-Means

K-Means is another method of unsupervised learning which
sorts data into distinct clusters by their features where each
cluster is composed of the points closest to its centroid.
Following similar reasoning to the EM algorithm, I chose
to adopt a semi-supervised approach with a small number of
labeled points.

K-Means consists of two steps: one in which points are
assigned to their closest centroid (or, in the case of labeled
points, assigned to the centroid bearing their label) and another
in which centroids are updated to be the mean location of their
assigned points, here with a modified weight given to labeled
points dictated to the hyper-parameter «. In mathematical
notation, given centroids i1, ..., /g, unlabeled points z(*)
with nearest cluster c(i), and labeled points 7@ with correct
centroids ¢, first set

¢ = argmin |z — ;2
J

and then update the centroids by

S e = j}a® 4 a3 1{e® = 350
Yy e® =} +a T, 1{e® = 5}
These two steps are repeated until the centroids converge,

at which point predictions are made on a new point x by
determining which centroid p; is nearest to .

Hj =

C. Reinforcement Learning

Reinforcement learning, broadly, allows for building a pol-
icy over the state space of a Markov decision process (MDP)
to maximize future rewards. In this paper, I use the value
iteration algorithm, which estimates the value of each state
given estimated future rewards. In particular, given a policy 7
mapping states onto actions, the value function of 7 is

memwzaﬂ
1=0

with hyper-parameter v as the discount factor. This function
satisfies the Bellman equations, which say that given transition
probabilities Ps,(s) := p(s;+:; = §'|s;i = s,a; = a), then

V7(s) = R(s) +7 D Pen(s)(8)V7(s)

s'eS

VT(s)=E

The Bellman equations lead naturally to the value iteration
algorithm, in which values are initialized to O for all states
and then updated using

V(s) == R(s)+ max y Z Py (sV(s')

until convergence.

In the context of the Hanabi communication error prob-
lem, reinforcement learning is intended to solve the issue of
overcorrecting for perceived errors, where in a game with a

cooperator which rarely make mistakes, our agent may lose
more points by ignoring falsely flagged hints than what is
gained from avoiding errors, and its implementation below
will reflect this.

V. EXPERIMENTS AND RESULTS

A. Mistake Identification

The first type of experiment I conducted was using K-
Means and the EM Algorithm to predict from the features
described in the Dataset and Features section whether a move
was genuine or not. Here, the objective is to correctly classify
each move by a mistake-prone agent as either genuine or
erroneous, meaning success is measured by the proportion of
moves that are correctly classified. In both categories, I found
after experimentation that both models yielded better results
when using three labels instead of two: one for mistaken moves
(Mistake), one for regular moves (Regular), and one for moves
carrying implicit meaning (Info). Using those, I trained my
models as described below.

1) K-Means: Here, I used the semi-supervised implemen-
tation of K-Means described in the Methods section. I used
200, or roughly 5%, of the training examples for the labeled
portion, and set o = 5, meaning that the weight given to
labeled examples was 5 times the weight of unlabeled ones.
Both values were obtained by running the model over the
training data with different hyper-parameters to observe which
came with optimal performance on the training set.

The results on the validation set are in the table below, with
each number representing the proportion of examples with a
given label assigned a certain prediction (so Row 1 Column
2 is the proportion of Mistakes which were predicted to be
Regular):

Predicted Label
Actual Label || Mistake Regular Info
Mistake 0.59 0.15 0.26
Regular 0.31 0.35 0.34
Info 0.14 0.10 0.76

Overall, 47% of examples were assigned to the correct label,
and looking strictly at genuine versus mistaken (meaning la-
bels Regular and Info would be identified), the model predicted
67% of examples correctly.

2) EM Algorithm: For the EM Algorithm, I used the
assumption that my data came from a mixture of Gaussians,
i.e. that each point of a given class was randomly drawn
from a multivariate Gaussian distribution. I used 200 labeled
examples with o = 100, and I determined both values in a
similar fashion as I did for K-Means. The results are in the
table below, formatted identically to the table for K-Means:

Predicted Label
Actual Label || Mistake Regular Info
Mistake 0.25 0.62 0.13
Regular 0.25 0.57 0.18
Info 0.08 0.71 0.21




Overall, 47.1% of examples were assigned to the correct
label, and looking strictly at genuine versus mistaken, the
model predicted 64.6% of examples correctly.

B. Hanabi Gameplay

Below, I run an experiment in which agents utilizing the
models from the section above play Hanabi against a mistake
prone agent. The primary metric here is the average Hanabi
score obtained, which ranges from 0-25. Even when the agent
I have chosen plays optimally without mistakes, it averages
roughly 18 points, making that a more realistic ceiling. In
Hanabi, if players play three cards which are not allowed, the
game is over and the final score is zero. This means that in
settings where the opposing agent is more prone to mistakes,
there may be no possible way to prevent the cooperator from
erroneously playing three incorrect cards in a row, resulting in
a score of zero. This means that when there is a large number
of mistakes, the ceiling may be lowered further.

In my experiments, I used the following six agents:

1) Advanced Human Strategy: This agent plays Hanabi
with a strategy I’ve used in games myself. Whenever this
agent gives a color hint, it is a signal to its cooperator
that they should play their leftmost card of that color.
While this strategy proves itself effective by reducing
the number of hints needed to convey information about
certain cards, if this agent erroneously hints a color, it
may lead its cooperator to play an inappropriate card.

2) Advanced Human Strategy with Mistake Rate (: This
strategy makes the same move as the Advanced Human
Strategy with probability 1 — £, although it instead
selects a random move with probability . The necessary
trade-off of wanting to rely on the genuine color hints
described above with avoiding compounding mistakes
if color hints are given erroneously makes this agent
a suitable candidate for testing the remaining strategies
against.

3) K-Means Agent: Upon obtaining its cooperator’s move,
this agent uses its trained K-Means model to predict
whether that move was genuine or mistaken. If it is
determined to be genuine, the K-Means agent will play
the strategy dictated by the Advanced Human Agent.
Otherwise, it will refrain from playing a card based on
a color hint but otherwise behave the same.

4) EM Agent: This agent behaves identically to the K-
Means Agent except its determination of whether a
move is genuine is determined by the results of the EM
training.

5) RL K-Means Agent: This agent starts by obtaining
the predicted class of the prior move using the K-
Means model, just like the K-Means agent. However, as
indicated by Figure 2, this result is then passed through
the RL policy to determine whether the prior move
should be treated as genuine, regardless of what it was
predicted to be. Also, along with the RL EM Agent
below, the RL policies used against Advanced Human
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Fig. 2. Visual depiction of RL K-Means Agent setup

Mistake Agents with different mistake rates 3 are trained
separately from one another to reflect the possibility that
a more conservative approach is warranted when dealing
with more mistake-prone agents.

6) RL EM Agent: This agent behaves identically to the
RL K-Means agent except that it uses the EM model
in place of the K-Means model. It maintains a separate
estimate of each state’s value from K-Means.

Each RL agent has a state space with 134 states. 108 of them
are in-game states determined by the number of life tokens left
(i.e. the number of incorrect cards played before the game is
over), the score rounded to a multiple of 3, and the predicted
label of the previous move. All of these states are assigned
reward 0. The other 26 states are the end-game states which
are solely determined by the game’s final score. The reward
for each of these states is the game score. Since games are
rarely longer than 50 moves, I chose to use a discount factor
of y=1.

For this experiment, I first trained both of the RL models by
running 100 games at each mistake rate 3 in order to determine
an optimal action strategy based on the predicted labels from
the K-Means or EM model. Then, for each
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I ran 100 games pitting the Advanced Human Mistake Agent
at mistake rate 3 against each of the Advanced Human Agent,
the K-Means Agent, the EM Agent, the RL K-Means Agent,
and the EM K-Means Agent and recorded the scores of each
game. The results are in Figure 3.

VI. DISCUSSION
A. Mistake Identification

Given the amount of complex logical reasoning that goes
into playing Hanabi, even at a basic level like the Advanced
Human Agent, the fact that the seven features I've selected
are able to significantly outperform random choice with both
algorithms should be taken as a positive sign.

A large plurality of examples were labeled Regular, which
could go some way to explaining the mistakes in both models,
especially given that they were likely more “spread out” across
features both as a result of their number and the number
of distinct situations from which a Regular move can arise.
In K-Means, the labeled examples for Regular may have
been spread out, leading that cluster to capture many of the
examples that it should have and resulting in the near-uniform
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Fig. 3. Results of gameplay with various agents

distribution of examples that should have been labeled Regular
across all predicted labels.

Meanwhile, in the EM model, the primary observable con-
sequence was that most examples of all types were labeled
Regular. Because the EM model estimates the proportion of
examples carrying each label, this could have been a source
of error here, too.

Because of the relatively small number of features used and
the large number of training examples, I am not especially
worried about my models overfitting the data.

B. Hanabi Gameplay

In the gameplay setting, the Advanced Human Strategy
served as a good baseline because it effectively followed the
same outline as the other agents, except instead of asking
whether a move should be treated as genuine or not, it
would always assume everything done was intentional. In less
mistake-prone environments, this would generally work to its
advantage since its assumption of correctness would match the
real world, although it would become much more vulnerable
in more mistake-prone environments whereas my agents were
designed to mitigate that effect.

Hence, while it would be incredibly difficult to beat the
Advanced Human Agent using mistake correction techniques
for low 3, when there are hardly any mistakes to correct,
a good model fulfilling the purpose I have set out should
outperform it at higher Js, which is exactly what all of my
agents did. In fact, for > 0.1, every single model of mine
outperformed the Advanced Human Agent at every 3, meaning
that despite the less-than-stellar performance of the mistake
detectors, when put into practice, they produced good results.
Yet, even at lower mistake rates, none of the four models
did significantly worse than the Advanced Human, suggesting
that the mistake correction did not carry a significant negative
impact on scoring in any conditions.

VII. CONCLUSION AND FUTURE WORK

The core findings of my paper relate to how communication
errors can be inferred from a cooperator’s behavior under
several different sets of assumptions in ways that significantly
impact performance in Hanabi. Both K-Means and EM proved
sufficient when semi-supervised at correctly identifying most
most examples as either the intended result of communication
or an unintended error, both properly classifying roughly two-
thirds of examples. Even though the confusion tables were
different, I suspect that because the misclassification rates were
so similar, the performance is more due to insufficient features
than the models themselves.

In the gameplay section, all agents outperformed the base-
line in high mistake settings, demonstrating the efficacy of
all of the algorithms tested. Surprisingly, the EM Agent
outperformed all of the other agents with cooperators with
high mistake rates, including the RL EM Agent. It is possible
that the RL EM Agent was not sufficiently trained when it was
evaluated, although I do feel that some further investigation
may be warranted.

Lastly, as previously mentioned, an ideal extension to this
paper would be more robust feature generation, possibly
including some sort of deep learning, since the complexity
of Hanabi likely requires similarly complex features to fully
maximize the potential of mistake-correcting agents.

VIII. GITHUB LINK
https://github.com/mriedman/cs229-project

IX. CONTRIBUTIONS

I (Matt) am the only author, and hence contributed
all of the report and code (aside from what was con-
tributed by DeepMind, NumPy, and Matplotlib, as well as
parts of run_game_mdk.py}and adv_human.py } which
I adapted from DeepMind in conjunction with a partner for a
fall quarter project).
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