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Abstract—Automating the process of manual hand-tuning of
parameters of any swarm robotics mechanism has been an
interest of the research community for a long time. In this
paper, we show that by constructing efficient reward functions
and treating the multi-agent system as a single entity we can
effectively learn optimal policies for forming a flock. We provide
investigation on the convergence properties of two learning
algorithms that belong to the same family of policy gradient
methods in reinforcement learning: DDPG and TRPO. This
work uses the collective motion dynamics that is based on
linear spring-like forces between self-propelled particles in an
active crystal. We tuned the damping coefficients of the dynamic
model for a swarm population of N = 100 using the learned
policies by DDPG and TRPO models effectively. We investigate
the application of DDPG and TRPO in a centralised multi-
agent approach, where we have a global state space matrix that
is accessible by all robots in the environment. We show that
both methods converge to optimal policies in learning emergent
collective flocking behaviours, qualitatively and quantitatively.

Index Terms—Swarm Robotics, Reinforcement Learning,
Multi-agent Learning.

I. INTRODUCTION

Swarm robotics is defined as “the study of how a large
number of relatively simple physically embodied agents can be
designed such that a desired collective behavior emerges from
the local interactions among agents and between the agents and
the environment” according to [1]. There are several swarming
behaviours that are important such as aggregation and clus-
tering, collective manipulation, transportation, flocking and
collective motion, shepherding some of which are bio-inspired.
Swarm systems are known to be robust to single point-of-
failures due to their nature of decentralized control schemes.
Furthermore, there is an added benefit of flexibility in solving
problems such as collective transport or manipulation of
objects. For instance, a team of robots can collectively achieve
much higher torques and forces than they would individually,
due to the weakness of their actuators. However, optimizing
swarm systems mostly requires manual hand tuning, which
can be a tedious task. With the advancements in deep and
reinforcement learning we can enable swarm systems to self-
tune their parameter space to their optimal values. In this
work, we tune the collective motion dynamic parameters via
policy gradient based algorithms. The input to both DDPG
and TRPO models are the position and orientation of each
robot in a swarm population of N = 100. The output is the
damping coefficients of AES model,{k, 5, «}, that are used
in the dot-product computation of the collective behaviour for
each robot in the flock. By choosing the optimal values of

coefficients the swarm can learn to flock, or if chosen badly it
can diverge and scatter around in the environment. Multi-agent
reinforcement learning for cooperative swarm intelligence is
a difficult task, mainly because each agent has partial access
to the global state of the swarm, and also due to the curse
of dimensionality for a large number of agents in a swarm.
Hiittenrauch et al. [2] explored the incorporation of actor-
critic approach, where critic has access to the swarm’s global
state, but actors are based on the locally observed sensory data.
They used a variant of DDPG for the simulation of 2D robots.
However, their method was decentralised and did not explore
the applicability of a centralised application of reinforcement
learning to a biologically inspired dynamic model. In [3],
further use of mean embedding distributions was introduced,
where each agent is considered a sample. They studied global
and local cases with a communication protocol proposed for
the local case in pursuit evasion and rendezvous problems
in swarm systems. In a followup study [4], they proposed
a leader-follower mechanism by using inverse RL to recover
unknown reward functions in a flock of birds. Part of this work
has been published as our previous work in [5].

II. DATASET

The nature of this work required the data collection to
be done online actively whilst the agent is interacting with
the environment and therefore collecting data into the replay
buffer. We apply certain data pre-processing to the data
collected by the agents in the environment to maximise
the generalisation capabilities of both methods: DDPG and
TRPO. We normalise by centering the data on zero mean
and then dividing by the standard deviation to ensure uniform
variance at all time steps. Our data is represented in an image-
like format where channels in image correspond to R-,G-,B
channels and are composed of three channels, where each
entry in pixel point is an agent’s X,y,# values. For a swarm
population of 100 agents this leads to 10x10x3 format of
an image-like representation. Normalization is done channel-
wise, meaning we calculate the mean of each x,y,f values
and then obtain three means and three standard deviations to
normalise channel-wise. The reason we compute normalisation
is so that the relative distance of the centre of the swarm
entered into the models remains unaffected by the position
of the centre of the swarm in world frame, by ensuring the
relative distances between each agent remains similar, even
when the swarm has moved in significant distances to another
point in the world frame.



III. METHODOLOGY

In this paper, we are considering the continuous state-space
in a continuous action domain. We train a group of agents to
maximise their expected reward based on their proximity and
distances to each other via reward signals. We investigate two
policy gradient methods: DDPG and TRPO. In this section,
we formulate the preliminaries and the problem to be solved.
Part of this section has been published in our previous work
in [5].

A. Flocking dynamics

This paper uses the Active Elastic Sheet (AES) model
originally proposed by [6] that consists of a force for each
robot that influences the linear and angular velocities of each
robot in the flock. In this model, there are local spring-like
interactions that are linear. A more detailed explanation of the
mechanics of AES can be found in [6].

Individual linear and rotational velocities are given as,

x;(t) = <v0(t) + of(fi(t) + Drér(t)).ﬁi(t)]> n(t), (1)

0:(t) = B{[f:(t) + Dré-(t)]Ai-(¢)} + Doea(t) ,  (2)

cos 0;(t)
sin 91 (t)
is the vector perpendicular to it.

Force vector for the flock can be computed by the summa-
tion of the individual force vectors for each individual i over
its respective neighbours in set S, where j is a member of set
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where rj;(¢) = x;(t) —x;(t) is defined as the relative position
vector of neighbour j in frame i, [;; is defined as the desired
equilibrium spring length that the model should maintain. We
used the Euler integration method. Summing over each robot
in swarm to compute a global force metric, Fy = + || Zfil £ ]
and ¢ = 25:1 expif, where ¢» € (0,1) is the degree of
alignment of the swarm. When fully aligned (i.e. flocking)
1 = 1, when completely misaligned (i.e. not flocking) ¢ ~ 0.

where 7;(t) = ] is the heading vector and A" (t)

B. Deep Deterministic Policy Gradients

In this section, we describe the building blocks of DDPG:
Q-learning, and policy learning. DDPG iteratively uses the
Bellman equation to learn the Q-function, which it then uses
the Q-function to learn the policy. It employs the actor-critic
learning paradigm and works on continuous action spaces.

1) Q-learning

Q-value is defined as the ’quality’ of an action taken by
an agent interacting in an environment. Optimal action-value
function obeys the Bellman equation, which states that the
value of the current state is the immediate reward summed
with the recursive value of discounted future states, as shown
below

Q*(s,a) = m?XE[R(T”SO =s,a9 = a] 4)

where T is a trajectory, sg is the initial starting state drawn
from the state distribution so ~ po(.). As our action space
is continuous and it is not feasible to use value iteration to
solve Q; as ¢ — oo, we use function approximation to learn
to estimate the optimal action-value function. Once action-
value function converges to its optimal solution, we can find
the policy, also known as the optimal policy, that maximises
the expected return starting from state s and taking action a
following the optimal policy thereafter. Optimal action-value
is defined as the maximum expected return attained by starting
in state s and taking action a, and following the optimal policy
forever in the future states. Our policy is a deterministic policy
that is parameterised by 6,

a*(s) = argmax Q*(s, a). 5)

DDPG approximates the optimal Bellman equation solution
with an artificial neural network (ANN), also known as the
critic, and trains it by minimising the mean-squared Bellman
error(MSBE) loss function,

L(D)=E

(@ss.0) = -+ 201~ ) maxQu(s's ) ] :
(6)

where, D is transition (¢, s, a,r,s’,d), @ is the approximator
function parameterised by ¢, 7 is the reward, ~ is the discount
factor for future expected rewards, s’ is the next state drawn
from the probability distribution P(.|s, a).As the target values
are also dependent on the network parameters that are being
optimised. Therefore, to avoid divergence, the use of time
delayed versions of actor and critic networks to ensure the
stability of the learning was proposed [7]. These networks
are called target networks and basically lag the online actor
and critic networks by a time delay of 7 that is also a
hyperparameter in the algorithm.
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Hence, our loss function after incorporating the target net-
works is

£(D) = B[ (Qols0) = -+ (1~ @) max Qur s “9’(5)”)2]

We use stochastic gradient descent to optimise the critic
network using the following gradient,

VoI(D) = B|Qs(s. )~

(r +v(1—d) max Qu (¢, a’)) VoQo(s, a)] (10)

2) Policy Learning

Our goal here is to learn a deterministic policy that
maximises the expected return starting from state s. This
is formulated using an objective function, which is also a
measure of performance,

J(6) = B|Qu(s, 10(5))]. an
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Fig. 1. Architecture overview of DDPG with multi-agent learning. Environ-
ment constitutes of N robots, actor produces the action a¢, which is observed
as s¢. Critic provides the actor with action gradients. Taken from our previous
work in [5]

Policy parameters are updated using the policy gradients
obtained from the critic network. Since the action space is
continuous, we assume that the Q-function is continuously
differentiable with respect to action space. We use the chain
rule to differentiate the Q-value with respect to actions, and
then actions with respect to policy parameters to provide a
policy gradient for each parameter in the actor network:

VoJ(0) = VaQ(s,a)Veu(s|o). (12)

Since we need to maximise the objective function, we
negate the policy gradients and optimise the parameters using
stochastic gradient descent,

0 0+a(VeJ(0)). (13)

C. Trust Region Policy Optimization

TRPO is a policy gradient algorithm that monotonically
improves the local approximation of the optimisation objective
with a KL divergence constraint [8]. TRPO uses Minorization-
Maximization to improve a lower bound on the local expected
reward iteratively and is guaranteed to monotonically improve
the policy. The lower bound is bounded at the current eval-
uation of #, and maximising the lower-bound leads to non-
decreasing value function, hence, monotonic improvements
in new policies. Our goal is to find policy parameters that
maximise the value function expressed in terms of advantage
over current policy can be locally approximated to remove
the dependency on the frequencies of the new policy by
substituting the frequencies with those from current policy as,

L(#) =V(O)+ Y _ ia(s) D> #(a|s)Ar(s,a) (14)
where L(0,14) = V(0,4) and the gradient of L is equal to
gradient of V at 6,,4. The lower bound on 7, is guaranteed
in the form of,

2ey
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Vﬂnew Z Lﬂ’old (Trnew) - (15)

which is tight at the m,., = and where ¢ =
maxg ” anﬂ"(a\s) [Aﬂ'(sa a)] ”
Our goal is to find new policy that maximises the lower

bound as the objective function.,
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where C is the penalty term. Due to the presence of the KL-
penalty term, solving this leads to small step sizes that would
be too small in magnitude [8]. Converting this optimisation
algorithm to Lagrange duality problem where the constraint
is the KL-divergence between new and old policies, we have
our objective as to maximise,

méxx LGold(enew) - (16)

0k+1 = argmaxL(Hk,G) s.t. DKL(0k||0) S 0 (17)
0

L(6 , 0) is the surrogate advantage function being optimized,

and Dgp (05|0) is the KL-divergence between old and new

policies evaluated at the states that were visited by the old

policy.L(0y,0) and Dk, (0||0) are given as,

L0 = E | g s ) (18)
5,a~Tg, 7'1'9,c ((L|S)
Drr(6k]10) = E [Dir(mo(|s)||7me,(-]5))] (19)
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L is approximated linearly and constraint, KL, is approxi-
mated quadratically as shown

L~gh(0—0)
1
Dxy, ~ 5(0 —0,)TH(0 - 6)

which is equivalent to optimising

Or41 = argmax g’ (0 — 6;) (20)
6

s.té(@ _0)TH(O - 0,) <6 21

Authors of [8] proposed conjugate-gradient method to solve
for the inverse of the Hession matrix, which is + = H ‘1g,
hence, solving for Hx = g without explicitly having to
compute the full matrix. Solution to new policy then becomes,

2%,

Opsr =0k + 1| ——H
* gTH=1g

g (22)
Line search is done iteratively to find the smallest positive
integer j such that the constraint is satisfied, and the surrogate
objective is improved. This step ensures the step size is not
too large and hence prevents explosion of the solution.

- 26 1
Op+1 =0+ mH g (23)
where «in(0,1) is the backstepping coefficient and j is
the smallest positive integer that satisfies the constraint and
optimises the surragate objective.
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Fig. 2. Actor (bottom) and critic (top) network architectures. Taken from our
previous work in [5]

D. Problem formulation

In this section, we define our problem formulation which
applies to both learning algorithms. Our state-space is a high
dimensional continuous vector space. Thus, our actor and critic
networks begin with convolutional layers in their first few
layers. This enables us to reduce the higher-dimensional state
space to a low-dimensional representation which is useful for
combining the actions with the intermediate layers in the critic.

1) State

The state-space of swarm of robots is represented as a
combination of three matrices, where each matrix is composed
of x,y and 0 values of each robot in the swarm. This state-
space input can be interpreted as an image with three channels,
but with pixel values replaced with pose and orientation of
each robot. In our case, the first channel is x-, second channel
is y-, and the last channel is 6 values of each robot. We
implemented swarm population case N = 100 robots. Our
states are normalised in channel-wise relation as described in
section II section.

2) Action

We designed our action space with two different bounds for
DDPG and TRPO models. Collective action set involves one
set of parameters that is being shared across the swarm in both
models. Hence, our action space is composed of 3 output units,
corresponding to {k,3,a} parameters for N robots. Since
the linear and rotational velocities of CM cannot be tuned
explicitly, as they are the result of the dot product between
heading and force vectors, we input {k, 3, a} parameters into
models, which in turn tunes the heading and force vectors. The
last layer of the actor network is passed through a sigmoid
layer to ensure symmetry in actions, and to also ensure that
the CM parameters never become negative. Actions are then
multiplied by the action bound vector associated with each
model to ensure that the values are within an acceptable range
for fast rate of convergence. Our action space scaling vector is
given as {1,4,0.1} for DDPG, and as {2,5,0.1} for TRPO.

3) Reward

The reward function in our problem is the heart of the
multi-agent learning and ensures that the swarm converges.

The two main elements of the reward design is composed of
the degree of alignment and the global force for the entire
swarm, which is obtained by summing over the individual
forces for each robot in the swarm, given in Eq. (3). The degree
of alignment needs to be maximised, and the global force is
to be minimised. Hence, we formulated a reward function that
is the negated global force function with a weighted sum of
the degree of alignment and the derivative of force term. We
then maximise this reward to ensure: (i) cohesive motion by
means of minimising the global force, (ii) ensuring polarisation
order converges, (iii) Maximising the rate at which (i) and
(i1) happen by means of incorporating swarm order and force
derivative term, For DDPG, our reward is

R*(s,a) = —wsFy + wyt) + Weriv VFy 24

where F,; denotes the global force obtained as Fy; =
| Zf\il fill, v = 25:1 expif, denotes the swarm or-
der, VF, denotes the derivative of the force w.r.t. time,
and their respective weights. For TRPO, derivative term in
reward is replaced by wa% Z?Zl ag, which is the mean
of the actions incorporated in the reward to prevent the
actions from diminishing to zero during training. The weight-
ings are given as [wy = —10,wy = 3, Wderiv = 0.5], and
[wf = —3,wy = 0.1,w, = 0.2] for DDPG amd TRPO models
respectively.

4) Network Architectures

As shown in Figure 1, the first layers of our actor and critic
networks were composed of convolutional layers, output of
which were flattened out and fed as input into the three fully
connected layers. For both networks, the first fully connected
layer was composed of 200 neurons, second layer of 200
neurons, and third layer of a single output for the critic, which
is the estimated Q-value, and 3 outputs for the actor. The first
five layers had ReLU as activation function, with the sixth
layer having a linear activation function. We used a filter size
of 3 for the first CONV layer and 2 for the following CONV
layers. The final action outputs were then scaled with their
respective values.

5) Weight Initialisation

For both the actor and critic networks, the weight ini-
tialisation for the first 5 layers were drawn from a uniform
distribution with standard deviation of 1/+/fan;, and mean
of zero where fan;, is the number of input neurons from the
previous layer. The last layer in critic was drawn from uniform
distribution with standard deviation of 3e~* and mean zero.
The last layer in actor was drawn from uniform distribution
with standard deviation of 3e~3 and zero mean.

6) Optimisation & Learning Schedule

We used momentum optimiser with SGD for both networks,
where at each time step of an episode both the actor and critic
network weights. We trained DDPG model for 100 episodes,
where each episode had a duration of 1000 episode-length,
and TRPO model for 270 episodes. We used a learning rate of
0.001 and a momentum of 0.3 in both actor and critic networks
unless stated otherwise. Our minibatch size was 32. We also
used batch normalisation in training as the original DDPG
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Fig. 3. DDPG (blue) model at inference: (a) t=0s, (b) t=500s, (c) t=1000s
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Fig. 4. TRPO (purple) model at inference: (a) t=0s, (b) t=500s, (c) t=1000s

noted that it helps speeding up the training. We used learning
rates of 0.001 and momentum of 0.5 for both actor and critic
networks in DDPG. Discount factor is 0.99 and soft target
weight is given as 0.001. For TRPO, we used a discount factor
of 0.995, 7 = 0.97, 12-regularization of 0.001 and maximum
KL-divergence of 0.01. Our batch-size is reported to be 512
for TRPO.

IV. RESULTS & DISCUSSION

We investigated experiments involving swarm populations
of N = 100 agents, where each agent is assumed to have
access to global state matrix for their local neighbourhoods.
Figure 5 shows that both models converge to optimal flocking
behaviours and hence learn useful flocking policies effectively.
Comparing the two methods, TRPO in figures (a) and (c)
takes longer to converge at around 100 iterations to converge
whereas DDPG converges around 25 iterations. DDPG is
known to be more sample efficient than TRPO. Also notice
that the peak overshoot in force plot of TRPO is much higher
than that in DDPG as well as the overall curve being much
more oscillatory. This could be explained with the fact that
DDPG is off-policy and TRPO is on-policy, hence it would
lead to higher variance than DDPG, thus, leading to much
more oscillatory learning experience. However, TRPO has the
benefit of monotonic improvement in policy at each iteration
and has lower bias than off-policy methods, such as DDPG.
During the tuning process, we encountered that DDPG is
very sensitive to hyperparameter changes and random seeds in
the experimental setup. This would be sensible as off-policy
methods are prone to higher bias than on-policy methods and
as a result lead to divergence in some random seeds and
large changes in hyperparameter space. We also found that
TRPO leads to better exploration strategy in terms of action
values suggested by the model, and DDPG was more prone to
exploitation of actions. Furthermore, the weightings given in
reward design in previous section rely on the optimal values
being chosen for effective learning. Increasing one of the
weights in relation to others would mean the one being more
emphasised and as a result this led to explosion. Our results
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Fig. 5. (a) Reward for TRPO during training over 260 episodes, (b) Reward
for DDPG during training over 100 episodes, (c) Convergence of global force,
hence, emergence of cohesive collective motion for TRPO during training over
260 episodes, (d) Convergence of global force for DDPG during 100 episodes.
Purple represents TRPO, and blue represents DDPG.

are also shown qualitatively at inference experiments, where
both models manage to learn to flock, with DDPG resulting
in more rapid convergence compared to TRPO. Note that the
robots in inference are initialised at the same random positions
with Gaussian noise. This initial state is not present in the
training dataset. At ¢ = (s, both methods have same initial
positions. After 100s of iterations, both models seem to have
approximately equal cohesiveness in swarm. At the end of
t=1000s, we see that DDPG is converged to optimal policy but
TRPO is stuck at a local minima, as the difference between
t = 500s and ¢ = 1000s are not very different qualitatively.
This shows the generalisation capabilities and the robustness
of both methods, but DDPG with a much better convergence.

V. CONCLUSION

In this paper, we investigated the application two policy
gradient methods where one directly parameterised the policy
space on (TRPO) and one that fitted a value function to
learn the optimal policy. We conclude that our hypothesis
that both models are capable of learning emergent flocking
behaviours is satisfied as illustrated in figures qualitatively and
quantitatively. We overcame the problem of sparse rewards and
non-stationarity of the environments in multi-agent studies by
composing our reward as if the agent was a single entity and
treating the collective mechanism as an agent. By doing so, we
can train multi-agent systems to collectively emerge flocking
behaviours under any random initial starting positions.
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