A Harmonious Approach to Algorithmic Composition

Nicholas Graziano
ngraz@stanford.edu

Abstract

A predictive text based approach was implemented to suggest a successive chord to a composer
given a preceding chord progression. While it proved relatively easy to implement it was limited by
the mapping of each chord to a single feature.

INTRODUCTION

It is hard to remember a world before
predictive text. Smartphones now offer complete
sentences as prospective responses to text messages
and emails. Itis vanishingly rare to interact with a user
interface without it trying to figure out what you are
going to input before you do. If machine learning can
be used to offer the next entry in a language
application, could a similar function not be achieved in
a musical setting?

A chord is a collection of notes characterized
by the intervals between its component pitches. In
classical music theory, certain chord forms are
considered to “want” to resolve to others. For
example, the dominant seventh chord feels as if it
should progress to its relative fourth, to an ear
accustomed to western musical conventions.
However, the majority of chords do not imply a
particular successor in their structure alone.

Language models have used long short-term
memory recurrent neural networks to map input
sequences to vectors of fixed dimensions. A similar
approach could be applied to this musical application
with different learned weights applying to preceding
chords of increasing distance.

RELATED WORK

Machine learning based music composition is
not a novel application but it has generally functioned
as a black box which returns a song or melody
actualized as a waveform or encoded in midi file. [1]
This is an incredible technological feat but not

necessarily useful as a tool to assist a human
composer.

In order to create a more user friendly
interface this was approached more similarly to a text
prediction application. Long Short-Term Memory
(LSTM) is a type of neural network that has become
popular for sequence to sequence mapping in
language processing. [2] One reason it is popular for
this application is that is capable of taking inputs of
variable length and returning outputs of different
lengths. Another strength is that the recurrent nature
of LSTMs allows it to learn on long sequences of data
with temporal dependencies.

DATASET AND FEATURES

There are a number of existing popular music
datasets in various formats as outlined by Wang. et al.
[3]. Many of these contain melody information for the
corpus but far less include an easy to process
sequence of chords. In their paper Wang et al. propose
a new dataset of 909 pop songs titled POP909. It
includes time sequence chord data for each song
presented in a natural form for a human composer, e.g.
G:maj for G major or E:min7 for an E minor seventh
chord. Besides the use of the colon as a delimiter these
are roughly identical to the form a musician would be
used to seeing.

A first pass through the corpus was used to
index the unique chords. The “N” used for a rest or
“none” was removed and the remainder were stored.
As an experiment chords with less than 100 instances
in the corpus were dropped, however this was omitted
from the final model as it didn’t appear to affect the
accuracy and would limit the acceptable inputs. A

distribution of the five most common chord types in
the corpus for each base note is provided in Figure 1.

9000
Chord Type: mmaj Emin Emin7 =7 ®maj7
8000
||
7000 B -
-]
6000 B

5000

= I

- - - -
4000 I I
3000 I
2000
1000

0
Ab A B B C Cf# D Eb E F F# G

Base Note

Count

Figure 1. Chord Distribution for Five Most Common Chord Types

A second pass was made through the dataset.
Each song was stored as a string of integers
corresponding to the index where each constituent
chord was stored in the dictionary. A sample of the
first five chords of the first song are given below both
as represented in POP909 and stored in the data set.
The distribution of the number of chords in each song
is given in Figure 2.

B:maj7 C#:maj Bb:min7 Eb:min B:maj7

186, 390, 287, 653, 186

i m I | | | I "
20 40 60 80 100 120 140 160 180 200

Song Length

Frequency
N i o ~ w
I & S & <]
o o o o o

%
o

Figure 2. Song length distribution

The entire corpus was stored as a PyTorch
dataset. When training and validating the model a
random five chord sequence was sampled from each
song for use where the first four considered an input
and the last four used as an output. It was determined

that the influence of any chord more than four prior
was of diminishing value. For a manual inquiry, only
the last four chords were fed in to the model. For an
input of less than four chords, the earliest chord was
appended to the front of the sequence until it reached
a length of four.

METHODS

Recurrent neural networks (RNNs) function
by maintaining a hidden state which acts as a sort of
temporal memory allowing the interpretation of a
sequence rather than a single input. Long short-term
memory describes a novel approach to recurrent
neural networks put forth by Hochreiter et al. in 1997.
[4] It is able to store information over a longer time
delay by instituting lags in the feedback loop and gates
which can be trained to determine the relevant
information to feed forward.

Deep learning is the process in which multi-
layered neural networks update. It consists of a
forward and backward step. In the forward step the
model parameters are updated per the new inputs. On
the back step the predicted outputs are compared to
the actual outputs via a loss function and updated per
an optimizer.

PyTorch is a Python package optimized for
deep learning applications with a built in LSTM
architecture. The forward step of its implementation
consists of updating the input, forget and output gate
values using the sigmoid function for activation and
the cell gate using hyperbolic tangent function. An
activation function is a function that maps any input to
either or a 0 or 1. Using these weights it then updates
the hidden state and cell state.

Adam is a popular optimizer for neural
networks built into PyTorch. It functions efficiently
only needing to store first order gradients and using
optimized time steps to update its estimates
parameters. [6] It also includes a dropout feature by
which random data from the input vector will be
zeroed out in order to regularize the model and avoid
neuron collapse. [7]

A model was adapted for chord based input
from a standard predictive text setup. [8][9]

Sequences of five integers representing chords were
sampled from random positions within each song in
the dataset. The first four were fed in to the model as
an input. The cross entropy loss was then calculated
between the output and the last four integers. A
backward step was taken and optimized using Adam.

The model was initially setup using 2 layers,
32 for both the hidden and embedding layer
dimensions, and a dropout rate of 0.2. The default
Adam learning rate of 0.001 was utilized. More detail
will be given on how these were optimized in the
discussion section.

DISCUSSION

Model convergence was measured using
PyTorch’s Cross-Entropy Loss function. This function
is chosen as it expects an integer input similar to the
indexing used for storing the chords rather than an
encoded vector. [10] The equation for cross entropy
loss is given by the equation below.

loss(x, class) = —x[class] + log Z exp x[j]

J

While the moving average of the cross-entropy
loss did seem to converge to some degree, the value at
each step was extremely erratic, varying at a
magnitude greater than that of the average
convergence as illustrated in Figure 3.

12

10 A

Loss

Epoch
Figure 3. Cross-Entropy Loss

Experiments were conducted, varying the
learning rate and introducing a weight decay used in

the optimization step. While it was possible to
manipulate these to produce a less erratic plot it was
clear that it was as at the cost of attenuating the
weights to such a degree that practically no learning at
all occurred before the influence went to zero. It is
possible that a larger batch size could have reduced
the loss at each step but unfortunately the way the
model was formulated the time sequence of the chords
occupy the dimension where PyTorch’s dataloader
attempts to expand the number of samples. Changing
this proved nontrivial and impractical due to time
constraints.

While the loss values were erratic they did not
appear to be divergent so the hyperparameters were
instead tuned based on model accuracy. The accuracy
was measured by feeding the previously partitioned
test data through the predict module of the model. As
in the training portion the first 4 chords of the
sequence were treated as input, the last integer of the
output was then compared to the index of the fifth
chord in the sample. An initial sensitivity was run for
learning rates of descending orders of ten. Once the
optimal order of magnitude was determined a finer
resolution test was run to select the ultimate value of
1.097E-03 as indicated in the figures below.

0.3

0.25 L4 ®
°®
°
g 02 e .. 9. °
@ ° e
3 ®)
< 015 ° °®
< ° [I
g L []
S 01 ® . °
o [- ®
[d -9
0.05 ® ®
® ©
°
0
6 -5 -4 -3 -2 1 0
log10(Learning Rate)
0.45
0.4 e
035 L4
o ° ®
Z 03 ~ o o° °
g [S 32
g 025 ° . ° : ® ® o °
< Y ::3. e s
2 o2 [® e o832 °
2 0.5 e o 0e0®°%° o * 3o
- @ ® [
>3
0.1 @

o
o
G

0
5.00E-04 7.50E-04 1.00E-03 1.25E-03 1.50E-03

Learning Rate

Figure 4. Learning Rate Determination Trials

As mentioned previously a weight decay
function was also examined. The weight decay
parameter of PyTorch’s Adam optimizer is somewhat
similar to a L2 normalization term although not
implemented identically as examined by Loshchilov et
al. [11]. As the model did not appear to actually
diverge the weight decay only acted to reduce learning
and thus accuracy and was ultimately omitted from
the model formulation.

0.3

[}
0.25 ®
® &
........................... ®
S 02 | ST
e [] ®
3 ® °
< 015 ° a @
T @ ®
o [
S o1
° @
. e
0.05 e
(]
°
]
-10 -8 6 -4 -2 0

log10(Weight Decay)
Figure 5. Weight Decay Optimization

Once the optimizer parameters were set a
similar battery was run on the model architecture
parameters. Initial trials were run varying the number
of layers and the dimensions of both the hidden and
embedding layers of the neural network. Ultimately
two layers was selected as it appeared that model
accuracy only dropped off with the inclusion of
additional layers as indicated in Figure 6.

0.3

0.25 L4
@
® "
S 02 °
e)
3 o) °
£ 015
o o
o [) []
S o1 <
° °
° ... ®
0.05 @ ioenennneee ®
°
°
0
1 2 3 4 5 6 7
N Layers

Figure 6. Layer Count Optimization

Once the number of layers was solidified
another test matrix was executed on the network
dimensions. Both the ratio between the layer
dimensions and the absolute dimensions were
considered. An optimal ratio of 1:2 for hidden to

embedding was determined. Absolute sizes of 512 and
256 respectively were selected due to the observed
diminishing returns.

0.4

®
0.35 °
ps ®
0.3 ° PY °
> °® ° ° ® ®
© 0.25] e ® ®
E ® [3 ® ® []
] { TRl [SR b L & e. . O L]
& 02 @..on ¢ ° ® ® [JAALIE T
= ® [® [[® [e,
z e o o o o o o e ..
o 0.15 ® ® ® o ® ®
=
0.1
0.05
0
=3 -4 -3 -2 -1 0 1 2 3 4 5
log2(Hidden/Embedding)
0.4
]
0.35 °
b e
0.3 ° ° °
z ° [°
© 0.25 ° ° ° °
S ° ° ° ®
8 : H H v [H
= 02 ° [T R ° ®
3z @ ..o »® ° ° °
D 0.15 |awwessnest & ® ® ®
S ; ° ° ° ° °
® ® ® ®
0.1 ® ®
[L] []
®
0.05 ®
0
4 5 6 7 8 9 10
log2(Embedding Dimension)
0.4
[)
0.35 ®
3
0.3 ° °
Z °) [}
© 025 ® ®
5 ° ® ° [
€ o3 < $ i S s s
= ° e ° e e
3 ®.. ° ° o -9
S 0.15 @ ® ® °
s e ° ° °
® [] ®
0.1 ® ® ® ®
[] []
[
0.05 ®
0
4 5 6 7 8 9 10

log2(Hidden Dimension)

Figure 7. Dimension Optimization
Next an optimal drop rate of 9.336E-02 was
determined.

0.4

0.35

] L) L)
0.3 °
S []
£ 025 ® ® o
3 ° o0 ° °
£ 02 [A— PRITEIILG YAl I LTI P .
ey 9" [J o e 0 @ el ®
3 e o 0 0 e
3 0.15 ° ° ®
= ° °
0.1
®
0.05
0
0 0.05 0.1 0.15 0.2
Drop Rate

Figure 8. Drop Rate Optimization

Although set in the beginning and tweaked
throughout model formulation a final sensitivity
experiment was run on the number of samples used to
train the model and the amount of epochs once the
rest of the parameters were solidified. To accomplish
this the full dataset was partitioned for the selected
number of training samples and the rest were used for
testing. Given that the dataset was only one sample
selected from each of the songs in the corpus it should
be noted that the test size of 59 corresponding to a
training size of 850 is considerably less than that of the
709 remaining for a training size of 200. Nonetheless
the model accuracy appeared to plateau at around
5000 total iterations (Njter = Nepochs X Nerain)
regardless of the combination of training size or epoch
count.

1
IS

(=]
w
«

o
w

°
> °
U °
m °
g 025 g :
8 | 1.1}
=Sl I B T . o s
T R e § : 3
g 0.15 ! 8
=
0.1
°
0.05
0
0 100 200 300 400 500 600 700 800 900
N Train
0.4
0.35
03 |
> : e 0
g 0.25 . g
g ° ® R e !
3 02 | @ g
z | R i :
°
B oas :
= ps : !

o
-

o
o
¢

o

3 4 5 6 7 8 9 10
N Epochs

o
>

=]
w
o

03 e
> £ [] []
§ 0.25 QQ;; 1 .
g 0 -t ..@333'” o?‘%
T %F oo 82°a 00 o
O] obe 8. .. ®
o 208]
3 015 g8 §
s 0,8

o
o

(=]
o
@

o

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Total Iterations

Figure 9. Training size and epoch optimization

Table 1. Final parameter values

Parameter Value
Tearning 0.001097
Ntrain 850
N, epoch 6
Nyayers 2
dembedding 512
Ahidden 256
Tdropout 0.09336

Given that only 5 chord long sequences were
taken from each song for each training/validation
session it was possible to specify different random
seeds and lean on the >90,000 possible overlapping 5
chord long sequences in the corpus throughout
development. A new seed was chosen to run a final
test on all 909 songs.

The amount of chords guessed correctly by the
first suggestion was 16.2%. The percentages guessed
within the first two and three suggestions respectively
were 22.1% and 25.9%. For a user test of “E:min
C:maj7 E:min9 C:maj A:min” corresponding to the first
5 chords of Pink Floyd’s “Welcome to the Machine” the
model suggested the following chord of D minor which
is unfortunately an inferior choice to the E minor
actually used in the song.

CONCLUSION

A predictive text based approach to musical
composition offers a relatively simple to implement
and interpret model. However, this naive setup fails to
leverage so much of the underlying mathematical
structure of music. Modeling each chord instead as its
constituent notes, either as a series of integers or a
multi-hot vector could enable better mapping to the
actual features that make up a chord rather than a
single arbitrary index. Similarly it would be
interesting to explore how the relationship between
relative chords could be generalized as the movement
from C major to A minor is equivalent to the
movement from G major to E minor. A better use of the
data in this corpus could have been to use all of the 5
chord sequences in the data rather than one per song
and to incorporate the key each song was in as an
additional feature.

REFERENCES [11] Loshchilov, Ilya, and Frank Hutter. "Decoupled
[1] Briot, Jean-Pierre, Gaétan Hadjeres, and weight decay regularization." arXiv preprint
Frangois-David Pachet. "Deep learning arXiv:1711.05101 (2017).
techniques for music generation--a survey."
arXiv preprint arXiv:1709.01620 (2017).
[2] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le.
"Sequence to sequence learning with neural
networks." arXiv preprint arXiv:1409.3215
(2014).
[3] Wang, Ziyu, Ke Chen, Junyan Jiang, Yiyi Zhang,
Maoran Xu, Shugqi Dai, Xianbin Gu, and Gus Xia.
"Pop909: A pop-song dataset for music
arrangement generation." arXiv preprint
arXiv:2008.07142 (2020).
[4] Sepp Hochreiter, Jiirgen Schmidhuber; Long
Short-Term Memory. Neural Comput 1997; 9
(8): 1735-1780. doi:
https://doi.org/10.1162/neco0.1997.9.8.1735
[5] “LSTM.” LSTM - PyTorch 1.8.1 documentation.

Accessed June 3, 2021.
https://pytorch.org/docs/stable/generated/t
orch.nn.LSTM.html.

[6] Kingma, Diederik P., and Jimmy Ba. "Adam: A
method for stochastic optimization." arXiv
preprint arXiv:1412.6980 (2014).

[7] “Dropout.” Dropout - PyTorch 1.8.1
documentation. Accessed June 3, 2021.
https://pytorch.org/docs/stable/generated/t
orch.nn.Dropout.html.

[8] Bitvinskas, Domas. “PyTorch LSTM: Text
Generation Tutorial.” KDnuggets, July 2020.
https://www.kdnuggets.com/2020/07 /pytor
ch-lstm-text-generation-tutorial.html.

[9] Mufioz, Eduardo. “Intro to RNN: Character-
Level Text Generation With PyTorch.”
Medium. Better Programming, February 11,
2021. https://betterprogramming.pub/intro-
to-rnn-character-level-text-generation-with-
pytorch-db02d7e18d89.

[10] “CrossEntropyLoss.” CrossEntropyLoss -
PyTorch 1.8.1 documentation. Accessed June
Z, 2021.
https://pytorch.org/docs/stable/generated/t
orch.nn.CrossEntropyLoss.html.

