RGBD Object Tracking for Visual Servoing

Rita Tlemcani
Stanford University
ritabt@stanford.edu

Abstract

Object tracking and visual servoing are crucial in vision-
based robot control. Visual servoing allows a robot arm
to autonomously grasp a target object. This paper aims
at constructing an object tracking algorithm using a Con-
volutional Neural Network (CNN) trained on RGB-D data
that will be used for visual servoing. After testing different
Neural Network architectures, the model can classify im-
ages from a large RGB-D dataset containing 21 labels with
88.38% accuracy. The model also uses a Bayesian Approxi-
mation method using Dropout layers in the CNN to measure
the epistemic uncertainty of predictions which is the output
uncertainty that comes from a lack in training data. The
trained CNN can be used with the image pyramid and slid-
ing window methods to draw a bounding box around objects
that the model can classify with no uncertainty.

1. Introduction

Object tracking has many useful applications towards
autonomous robotics in addition to various fields such as
video surveillance and editing. Autonomous cars rely on
object detection and tracking to safely navigate their envi-
ronment avoiding pedestrians and other vehicles. Robot-
environment interaction can be achieved when a robot can
localize objects in 3D space from sensors with no previous
knowledge of the ground truth.

While much work has been done[“] to recognize object
classes and bounding boxes from RGB data, some modern
stereo cameras such as the Intel RealSense[6] have access
to a fourth depth component which can provide more data
to better train a CNN as well as provide more detailed in-
formation about the robot’s 3D environment. In theory, the
model can learn patterns in 3D shapes more analogous to
how a human perceives their environment.

For RGB-D Object Tracking for Visual Servoing, the goal
is to implement a program that can classify objects and de-
tect their bounding boxes in real time from an off-the-shelf
stereo RGB-D sensor for applications of visual servoing and
robot-environment interaction. This is achieved through an

&<y

Figure 1. Examples from the dataset. These images belong to the
classes Apple, Ball, Camera, and Instant Noodles from left to right

object detection program using a simple model and trained
on a dataset that doesn’t provide ground truth bounding
boxes.

This paper proposes a method to process RGB-D data
for training and a simple CNN model that uses Bayesian
Approximation to determine the uncertainty of the output.
The trained CNN with uncertainty output can achieve bet-
ter classification performance than a regular classification
CNN in the object localization task.

2. Related Work

Real-time spatio-temporal feature tracking and object
detection are key to building a visual servoing program,
as explained by E. Marchand and F. Chaumette[|2]. There
are two main ways of tracking an object using visual input:
feature-based and model-based tracking. The second ap-
proach allows for more robust visual servoing models and
better performance because it is based on the 3D informa-
tion of the model. Assuming that the 3D CAD model of
the object of interest is provided, Marchand and Chaumette
showed that it is possible to combine the 2D features and the
object model for higher accuracy, efficiency, and stability in
the visual servoing task.

YOLO[?9] addressed the object detection problem using
anovel and incredibly fast method. They used a single CNN
pass, which explains the name You Only Look Once, dur-
ing testing to determine the bounding boxes of objects in
the image. They trained their network to be robust against
background errors by training their model on full images.
Their method is based on dividing the input image during
test time into an .S x S grid where each cell outputs a number

of bounding boxes along with the confidence score of each
box. They use the Intersection Over Union (IOU) method
using the ground truth bounding box to determine the per-
formance of their model.

The IOU method has been commonly used as an eval-
uation metric for the accuracy of an object detection algo-
rithm when the ground truth bounding boxes are part of the
dataset. Y. Gal and Z. Ghahramani proposed[3] a simple
way to estimate the model’s uncertainty using Dropout lay-
ers. They proved that applying a Dropout layer before ev-
ery weight layer is mathematically equivalent to a Bayesian
approximation of the Gaussian process[10]. When using
this method, it is important to keep the dropout layers ac-
tive during testing and run the datapoints through the model
multiple times. The distribution of the output labels can be
used to determine the uncertainty of the model.

3. Dataset

The CNN is trained on the RGB-D Object Dataset from
the University of Washington[!1]. This dataset is one of
the largest publicly available RGB-D datasets with many
different labels. The dataset contains 51 categories (e.g Ap-
ple, Bowl, Calculator .. etc) and each category has between
3000 and 5000 data points. See Figure 1 for four examples
from the dataset.

The dataset is unprocessed and contains more informa-
tion than what is needed for this project. The preprocessing
script generates images as numpy|[4] arrays of shape (50,
50, 4) for each datapoint where the height and width are 50
and there are four channels for red, green, blue, and depth
(RGB-D). The images in the dataset were crops of larger
images. K. Lai et al.[] |] manually cropped each image to
fit the object of interest. Due to this, the datapoints have
largely different shapes, which can be observed from the
different sizes in Figure 1. The width of the images in the
dataset ranges from 62 to 196 pixels and the height ranges
from 47 to 156 pixels.

Because CNNs require that all the input datapoints are
of the same size, the dataset needed to be modified to fit
the size (50, 50, 4). The first approach was to pad the dat-
apoints with 0 values accross all channels so that the mini-
mum height and width are 50 and then take a random crop
of size (50, 50, 4) from the padded image. This method
created issues in training and testing because the CNN was
trained on crops of the images only and was not trained on
the full image and it was unable to predict a full image cor-
rectly. The second approach was to create a resize of each
datapoint by first zero padding to create a square image and
then resizing using OpenCV[!] helper functions to resize
the image to (50, 50, 4). Using a random variable, 80% of
the processed dataset was a resize and 20% was a crop using
the first method mentioned above. The dataset was set up
this way to prepare for image pyramids necessary to create

Input Image (4, 50, 50)
Conv2D —l(3x3) X8
BatchNorm + RelLU

Conv2D —(3x3) x 16
BatchNorm + RelLU
Conv2D — (3x3) x 32
BatchNorm + RelLU
Conv2D — (5x5) x 64
BatchNorm + RelLU
Conv2D — (5x5) x 80
BatchNorm + ReLU
Linear (80*50*50) to 1
Output Ilabel (1,)

Figure 2. Architecture Representation of the First Model

bounding boxes (see Methods for more details). Training on
crops helps the model recognize small parts from the object
of interest.

The images in the dataset are frames from a video taken
of an object spinning on a turntable. As a result, contin-
uous frames are almost identical. To reduce training time
and to make sure that there are not repeated images in the
dataset, one out of 8 datapoints were processed from 21
categories. After removing redundant datapoints and pre-
processing each datapoint to unify the size, the dataset was
separated into training, validation, and testing. There are in
total 12, 044 datapoints and 80% was used for training, 10%
for validation, and 10% for testing.

For easy interfacing with Pytorch[1 3], the dataset was di-
vided into batches of size 100 and each datapoint was turned
into a torch tensor of size (4, 50, 50). Also, the labels were
made into one-hot vectors to work with the specific loss
function used with the CNN model.

4. Methods

Two different CNNs were developed for this project. The
first CNN architecture was for regular classification and
the second CNN architecture used dropout as a Bayesian
approximation[3] to measure the model’s uncertainty. The
first model converges faster while training and only needs
one pass through the model during test time. The second
model is slower to converge due to multiple Dropout lay-
ers. It is also slower during test time due to the fact that
each datapoint needs 100 passes through the model during
testing to determine how uncertain the model is about the
classification of each datapoint. Although the second model
is slower, it leads to better results in object detection. For
object detection, image pyramid and sliding window tech-
nique were used to determine the location of an object with-
out having access to the ground truth bounding box.

4.1. First CNN Model

The VGG model[! 5] showed that the use of many small
filters (size 3x3) in the convolutional layers can result in
high testing accuracy. By following the same logic, the

Input Image (4, 50, 50)
Conv2D —l(3x3) X8
Dropout + ReLU
Conv2D —(3x3) x 16
Dropout + ReLU
Conv2D —(3x3) x 32
Dropout + ReLU
Conv2D — (5x5) x 64
Dropout + ReLU
Conv2D — (5x5) x 80
Dropout + ReLU
Linear (80*50*50) to 1
Softmax
Output Ilabel (1,)

Figure 3. Architecture Representation of the Second Model

model has 3 layers that use (3x3) filters then 2 layers with
(5x5) filters in order to capture larger patterns from the
image followed by a fully connected layer. Each convo-
lutional layer was followed by a 2D batchnorm layer for
regularization[7] and a ReLu activation layer. Batch Nor-
malization also makes the model more robust to bad initial-
ization and is a commonly used regularization technique.
See Figure 2 for a visualization of the model’s architecture.

The optimizer used for this model is a Stochastic Gradi-
ent Descent optimizer with momentum. The use of momen-
tum with SGD has shown to allow for faster convergence in
training[|4]. The loss used is the multi class cross-entropy
loss.

After training for 20 epochs (passes over the whole
dataset) with learning rate 6 x 103, momentum 0.3, and
regularization strength 10~#, the model was able to achieve
87.82% accuracy on the validation set (used for hyperpa-
rameter tuning) and 89.49% accuracy on the test set.

4.2. Second CNN Model

Athough the first model was able to achieve sufficient
accuracy in classifying objects from the dataset, the model
outputs a high confidence for a random label when intro-
duced to objects not found in the dataset. Therefore, thresh-
olding as a heuristic to remove unlearned objects and back-
ground noise would not work as intended.

To remedy this, Dropout as a Bayesian approximation[3]
was used in the second model to find an approximation
of the output’s uncertainty. Inserting a dropout layer af-
ter each convolution layer is mathematically equivalent to a
Bayesian approximation[1 0] of the Gaussian process. Dur-
ing testing, the dropout layers should be kept active and
each datapoint is passed multiple times through the model.
The mean of the output labels for each datapoint is consid-
ered the output label and the standard deviation represents
the uncertainty of the label. This method gives an estimate
of the epistemic uncertainty of the model which is the un-
certainty that arises from a lack of training data.

The dropout layers take as an input a probability. The
neurons in the following layer will be dropped by the in-
put probability. Dropout is a commonly used regularization

Figure 4. Representation of the image pyramid and sliding window
techniques

technique.

To implement this technique, the same convolutional lay-
ers from the previous model were used, but the Batchnorm
layers were replaced with Dropout layers and a Softmax
layer was added after the linear layer as proposed by Y. Gal
et al.[3]. See Figure 3 for a representation of the model’s
architecture. The recommended[3] dropout probability of
p = 0.2 was used as well as the recommended loss func-
tion and optimizer which are the Mean Squared Error loss
(MSE) and the Adam optimizer.

Using a learning rate of 5 x 1075, a regularization
strength of 1074, and after training for 100 epochs, the
model was able to achieve 88.95% accuracy on the vali-
dation set and 88.38% accuracy on the test set.

4.3. Object Detection and Bounding Boxes

After training a CNN, we can use the image pyramid[2]
and sliding window[&] methods to determine where an ob-
ject is on an image and draw a bounding box around it.

4.3.1 Image Pyramid

The image pyramid method allows a model to be able to
detect objects within an image at any scale[2]. This method
works by taking in an original image and resizing the im-
age multiple times. We then pass each one of the generated
images through the model which creates a scale invariant
classification model. See Figure 4 for a visualization of the
image pyramid technique. It is important to keep track of
the scale used at every level compared to the original image
to be able to recover the original coordinates.

4.3.2 Sliding Window

The sliding window[&] technique works by taking multi-
ple crops from an image and passing each one through the
CNN. The crops are taken by starting at the top left corner
and moving the window to the right and down at the end of
the row using a stride value. A smaller stride value allows
for more accurate object localization but a higher compu-
tational cost. As you can see from Figure 4, where the red
rectangle represents the window, using the sliding window

calculatorcap
ball

o

cereal box
.

Figure 5. Before and After using the bounding box heuristic

with the image pyramid method allows the model to look at
different scales of the input image.

5. Experiments

The RGB-D dataset offers two types of images: crop and
scene. The crops are small images centered around the ob-
ject of interest, while the scene is a larger image where at
least one object from the cropped dataset is present (See
Figure 5). The CNN was trained on the cropped images and
the larger scene images were used to test the object detec-
tion algorithm. Since the dataset does not provide a ground
truth bounding box for the objects, the scene images need to
be inspected to determine if the bounding box is accurate.

The first model was trained on crops from the small im-
ages that only capture the object of interest so the dataset
can have a unified size across all data points for the CNN
model. The model showed a test accuracy of 74.69% when
only training on parts of each image. When using the model
for object detection, it recognized any curved edge (e.g the
turntable) as categories that have a curved edge such as ba-
nana or bowl with high probability (between 60% and 80%).
Because the model was not given full windows containing
the objects as training data, the entire structure of an object
is unknown which can lead to false positives. For example
if trained on a window containing the edge of a white ce-
ramic bowl, at test time a background image of a portion of
the turntable’s edge may be incorrectly classified with high
confidence.

To account for this, the dataset was reset to use resized
full object images instead of random crops which resulted
in a higher test accuracy of 89.49% and performed bet-
ter on the scene images but still returned high confidence
false positives from the background. The second model
was introduced as a way to determine the uncertainty of the
model’s output. When using the Dropout Bayesian Approx-

imation method, every data point was passed through the
model 100 times during test time while keeping the dropout
layers active. Then, the mean and standard deviation are
calculated, if the standard deviation is not equal to zero it is
assumed that the model is uncertain about the label and the
bounding box is not drawn.

Using the second model showed a great improvement
and there were less false positives from the background.
However, the problem was not completely eliminated, so
a heuristic was used to reduce the false positives from the
background. The heuristic used is that if a bounding box of
a label has no overlapping bounding box of the same label,
then it is removed. That is because 4 images are gener-
ated from the image pyramid with a sliding window of size
(50x50) with a stride of 40 and there are repeated windows
of the same area that will be classified with the same label.
This method removed noise from the bounding boxes and
created a bounding box around the object of interest with
very little error. Figure 5[5] shows how the heuristic works.
The model detects a bowl where the turntable is because
the color and the depth are similar. The edge of the table is
detected as a binder due to a similarity in shape.

6. Conclusions

In this project, two different CNN architectures were
built and trained on an RGB-D dataset: a regular classifi-
cation CNN and a CNN that outputs the uncertainty using
a Dropout Bayesian Estimation method. The second model
showed better results for the object detection and bounding
box problem. The first model detects false positives with a
high confidence which is a problem that couldn’t be solved
with thresholding. The second algorithm uses a technique
that trains with dropout layers and keeps the dropout lay-
ers active during test time. At test time, each datapoint is
passed through the model 100 times and the mean and stan-
dard deviation are used to determine the uncertainty of the
model.

7. Future Work

The accuracy of this model may be improved with an
additional catch-all background object category for training
containing background crops from the large scene images.
This method could help get reduce false positives seen in
Figure 5.

Additionally, RGB-D videos from the dataset can be
used to draw bounding boxes over multiple frames and track
objects over time. This can be achieved through a per-frame
use of the model or by training using temporal information.

References

[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 2

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

(10]

(11]

[12]

(13]

(14]

J. R. Bergen P. J. Burt E. H. Adelson, C. H. Anderson and
J. M. Ogden. Pyramid methods in image processing, 1984.
RCA Engineer. 3

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning, 2016. University of Cambridge. 2, 3

Charles R. Harris, K. Jarrod Millman, Stéfan J van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime
Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature,
585:357-362, 2020. 2

John D Hunter. Matplotlib: A 2d graphics environment.
Computing in science & engineering, 9(3):90-95, 2007. 4
Intel. Intel® realsense™ depth camera d455. https:
//ark.intel.com/content /www/us/en/ark/
products /205847 /intel -realsense—-depth-
camera-d455.html,. 1

Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift, 2015. Google Inc. 3

Junseong Bang Jinsu Leel and Seong-I1 Yang. Object detec-
tion with sliding window in images including multiple simi-
lar objects, 2017. 3

Ross Girshick Joseph Redmond, Santosh Divvala and Ali
Farhadi. You only look once: Unified, real-time object de-
tection, 2016. https://pjreddie.com/darknet/
yolo/. 1

Michael Kana. Uncertainty in deep learning. how to mea-
sure?, 2020. https://towardsdatascience.com/
my — deep — learning - model - says — sorry—1i-—
dont-know—-the—answer—-that-s—absolutely-
ok-50ffa562cb0b A hands-on tutorial on Bayesian es-
timation of epistemic and aleatoric uncertainty with Keras.
Towards a social acceptance of Al 2, 3

Xiaofeng Ren Kevin Lai, Liefeng Bo and Dieter Fox.
A large-scale hierarchical multi-view rgb-d object dataset,
2011. In IEEE International Conference on Robotics and
Automation (ICRA). 2

Eric Marchand and Francois Chaumette. Feature tracking for
visual servoing purposes, 2005. Robotics and Autonomous
Systems, Elsevier, 52 (1), pp.53-70. ffinria-00351898f. 1
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024-8035. Curran Associates, Inc., 2019. 2

Ning Qian. On the momentum term in gradient descent
learning algorithms, 1999. Center for Neurobiology and Be-
havior Columbia University. 3

[15] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition, 2015.
Visual Geometry Group, Department of Engineering Sci-
ence, University of Oxford. 2

