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Introduction: Acute myeloid leukemia is an aggressive form of hematologic cancer
characterized by the over proliferation of myeloid blasts in the bone m arrow. It is the most
common type of leukemia amongst adults’ and is responsible for the highest leukemia-related
deaths annually®. Treatment consists of cytotoxic chemotherapy followed by an allogeneic bone
marrow transplant, implemented with limited success?. Late detection often reduces the efficacy
of treatment, as disease burden tends to rise over time. Patients with higher disease burden at
time of diagnosis tend to be much harder to treat clinically. We believe that the way forward in
leukemia treatment is with early diagnosis and early treatment to reduce overall disease burden.

One challenge to early diagnosis is the difficulty in obtaining testable samples. AML is thought to
originate within the bone marrow, and thus, clinical diagnosis requires a bone marrow
aspiration, which is a minor surgical procedure done to extract soft tissue from within the bone.
This aspirate is then tested by pathology, who will confirm a diagnosis based on the sample.
Bone marrow aspirates are the gold standard in diagnosing leukemia patients, and have
extremely high accuracy in determining a patient’s disease status.

Bone marrow aspirates, however, are not a routine screening procedure and are only ordered
when the provider has adequate suspicion of a hematological malignancy. These tests are
expensive and extremely painful for the patient, who is usually only under local anesthetic
during the procedure. It is simply impractical and inefficient to make these a routine screening
procedure--instead, we want to focus on the screening potential of routine blood tests (which
extract peripheral blood).

We believe that peripheral blood samples can also be effectively tested for malignancies. Since
all Americans are recommended to obtain routine blood exams at least once per year,
malignancy screening could be easily added onto the existing panel of blood exams without
necessitating any additional procedures for the patient. Thus, there is no need to scale
infrastructure or place additional burden on healthcare providers. In addition, malignancy
screening generally consists of basic genomic panels that can be easily integrated into the
existing phlebotomy workflow.

One main barrier to implementing peripheral blood malignancy testing is the low presence of
disease within the samples. Most of the disease will be located in the bone marrow, as opposed
to in the peripheral blood, so a concern arises over the panels’ ability to pick up disease. To
address this issue, we can explore the integration of newer molecular assays which can cheaply
and efficiently perform highly sensitive expression profiling, sometimes on the single cell level.
For these to be effective, however, clinicians must be able to: 1. Identify relevant subsets of cells
from the overall raw data 2. Generate predictions about disease status based off of the



expression patterns of these specific subsets of cells. Our project aims to lay groundwork for the
potential of machine learning to solve these problems.

Datasets: We will use a total of 4 datasets pulled from the public Gene Expression Omnibus,
which is run by the NCBI to help us achieve our aims. First, we have GSE42519 from Rapin et
al., 2014, which contains microarray expression data from 10+ blood cell types. This dataset will
be used to create profiles for different blood cell types in order to validate the hypothesis that
blood cell types can be effectively separated by expression data. Our second and third datasets
will be used to train a diagnosis classifier for disease vs healthy individuals. These include
GSE12417 from Metzeler et al., 2008, which has gene expression data for 405 AML patients
derived from blood sources, and GSE32719 from Pang et al., 2011, which has gene expression
data for hematopoietic stem cells (HSCs) for 27 healthy patients. We will use the former dataset
as a disease profile, and the latter as a profile for healthy controls since HSCs are often thought
to be sound hematological control for disease states. Before working with the data, we will
perform PCA to reduce dimensionality to two principal components, since the amount of
features (54765) greatly outweighs the amount of samples. After combining these two datasets,
we will also split off 15% from this combined dataset to use for validation purposes. Our fourth
dataset GSE17054, from Majeti et al., 2009, will serve as our test set, as it includes both
leukemic and HSC expression profiles. After testing on GSE17054, from Maijeti et al., 2009, we
will then combine datasets 2-4 together and perform 4-fold cross validation with the combined
datasets (3 repeats). It is worth noting that all four of our datasets were generated using the
Affymetrix Human Genome U133 Plus 2.0 Assay, which ensures overlap between the features
(genes) of each dataset. The Affymetrix assay measures expression data on the Human
Genome U133 Set of genes, which consists of comprehensive whole genome coverage on the
most well-substantiated human genes (54675 separate genes).

Methods: We propose using machine learning to aid in the diagnosis and identification of acute
myeloid leukemia. We will first use unsupervised machine learning methods and blood cell
expression data from Rapin et al., 2014 to group and classify cells by type in order to create an
overall profile of blood cells types based on expression patterns. To do this, we will first parse in
the data, which is provided by the Gene Expression Omnibus in a series matrix file. We will aim
to create a dataframe with samples and features on either axis. Then, we will run a PCA
analysis, which we believe to be perfect for this aim, in which we observe high dimensionality
data (in the form of gene expression values) that benefits from reduction. We will also overlay
our plot with true labels to assess the validity of such a dimensionality reduction.

Subsequently, we aim to use expression data from Metzeler et al., 2008 and Pang et al., 2011
on hematopoietic and leukemic stem cells to train a logistic regression model. To do this, we
must first parse the series matrix files from the Gene Expression Omnibus and standardize the
format between the two datasets. We will then need to label each sample as either a ‘disease’
or ‘control’ sample. Since there exist many more disease samples than control samples, we will
pick 27 disease samples randomly from our dataset to merge with our 27 control samples from
Pang et al., 2011. We will merge the two datasets together by each gene. If there are any genes
that do not overlap between the two datasets, we will omit these rows. After merging the two



datasets, we will preliminary perform data exploration by conducting PCA and reducing the
features to 2 dimensions; we then subsequently perform t-SNE and plot for visual analysis.

We will then use the python scikit-learn package to train a logistic regression classifier with the
PCA data. We will apply this classifier on a validation set consisting of 15% of our original
dataset and assess performance before moving on. We will test our validated model on Majeti et
al., 2009. To do this, we will first parse the dataset from Gene Expression Omnibus, filter out any
features that do not match our training features, and conduct PCA dimensionality reduction on
the Majeti dataset. After this, we will run our classifier on the 13 samples in the dataset from
Maijeti et al., 2009, and report subsequent performance metrics.

In addition to the procedure described above, where we train and validate on the Metzeler et al.,
2008 and Pang et al., 2011 datasets and test on the Majeti et al., 2009 dataset, we will also aim
to combine all three datasets into one large dataset. We will then train and test another logistic
model on this combined dataset using 4-fold cross validation with 3 repeats.

We think that logistic regression is an appropriate model for the binary classification problem of
disease status. Since we have adequate training data, we believe that our logistic regression
should perform well provided that gene expression profiles of diseased vs healthy patients are
significantly different. Since hematology research provides feature rich datasets, there have
been previous attempts to utilize gene expression data to produce useful clinical insights. In
fact, Metzeler et al., 2008, from which we obtained our disease expression dataset, actually
used their dataset for prognostic applications (such as predicting overall survival), suggesting
that gene expression data can be a valuable resource for outcome prediction.
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Results:

We initially conducted PCA analysis
of single cell gene expression data of
healthy hematopoietic system from
Rapin et al., 2014 with the goal of
seeing if PCA could categorize
different cell types (Figure 1). We
noticed that PCA was generally able
to group related blood cells, but due
to our small dataset size (34
samples, 54675 features), it was
difficult to interpret.

We then conducted t-SNE analysis of
single cell gene expression data for
27 healthy hematopoietic stem cells
(HSCs) and 27 cancerous Leukemic
stem cells (LSCs) from our combined
Metzeler et al., 2008 and Pang et al.,



2011 dataset to predict if an
— Fv'g‘:;eczt;SNE unsupervised training model would be
True Type able to discriminate between healthy
. ® and diseased stem cells (Figure 2).
Similar to the previous PCA analysis,

% the clustering looks promising but it is
) difficult to tell because of the small
» dataset size (54 samples, 54675
features) .

We then began to train our model. We
performed PCA on the combined
dataset, which contained both healthy
and cancerous samples. From here, we
randomly selected 27 disease samples
and 27 healthy samples and trained a
logistic regression model on 85% of
these samples and validated using the
-100 50 0 0 100 remaining 15%. We obtained a
validation accuracy of 100%.
After validation, we tested on the Majeti et al., 2009 dataset and obtained a testing accuracy of
38%, a sensitivity of 0%, and a specificity of 56%.
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Lastly, we performed PCA dimensionality reduction on the 13 samples from Majeti et al., 2009
and added these samples into the training set for our logistic regression model. We used the
RepeatedKFold() function from scikit-learn to perform 4 fold validation with 3 repeats on this
combined dataset. Our validation obtained an accuracy of 97%.

Discussion: From our initial experimentation, it appears that PCA and t-SNE analysis can be
performed somewhat successfully on single cell gene expression data. In Figure 1, we show
how PCA is able to separate the major cellular groups visually based on expression data. In
Figure 2, we note that t-SNE also seems to work well distinguishing between healthy and
cancerous stem cells. We even note that the cancerous and healthy stem cells can be easily
separated with a line, and thus it may be promising to use SVMs for future classification
problems.

Where we start to run into an issue is with our logistic regression model. Despite obtaining a
validation accuracy of 100% initially, our model only obtains an accuracy of 38% when testing
on the Majeti et al., 2009 dataset. This suggests two things; first, that our model must initially
have been overfit to our training dataset. Second, there must be obvious challenges with
interpreting the expression data that make it difficult to perform transfer learning on new
datasets. One problem that may have occurred is our usage of PCA. Since PCA was done
independently (between the testing and training set), it does not guarantee that the same
metrics were used. Another challenge is the calibration of scientific assays that are used to



measure single cell expression data. In other words, the values from one dataset may not be on
the same scale or magnitude as the values from another dataset, even though the assays
themselves are physically identical. This is an unavoidable problem when working with
medical/biological data, and the only solution is often to work within a dataset, as opposed to
between datasets.

This is in part why we decided to add the Majeti et al., 2009 dataset with our original training set,
perform PCA on the combined dataset, and retrain our model with the combined dataset. We
thought that if we were to integrate the foreign dataset into training, we would be able to account
for some of the miscalibration between datasets. We found that when we performed cross
validation after retraining with the Majeti data, we obtained an accuracy of 97%, which
confirmed some of these suspicions. This suggests that when working with expression data,
researchers should either aim to train from diverse datasets, or should try their best to work
within a dataset so as to not introduce potential problems with data calibration.

Conclusion: Despite our classifier holding poor performance when testing on novel datasets,
we have shown that when working within a dataset, machine learning can be incredibly powerful
in making predictions with high accuracy. We are led to believe that issues with data calibration
between datasets can be overcome by integrating more datasets into model training. Thus, as
more and more cellular level data is generated in the field of hematology, the integration of
machine learning becomes more and more viable. We believe that future efforts can contribute
to a better understanding of a healthy blood cell expression environment and lead to machine
learning-based tools that can aid physicians in diagnosing acute myeloid leukemia early,
improving patients’ prognosis.

Contributions: Both Raymond and Vardhaan worked together on all aspects of the project
including dataset searching, initial data exploration, model training and testing, and the write up.
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