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Abstract

Manipulation tasks in robotics stand to benefit immensely from detailed tactile
information. In fine-grained tasks in which the gripper occludes the camera, tactile
information can keep the robot appraised of the exact state of its current grasp.
We investigate the application of visuo-tactile sensors to a peg insertion task. We
use the tactile sensors, in addition to other sensor modalities, to learn a state
representation of our peg insertion task. This state representation is then used to
train a reinforcement learning agent to solve the peg-insertion task.

1 Introduction

Manipulation in humans benefits from a variety of sensor inputs such as vision, touch, and proprio-
ception. Even simple tasks such as inserting a key into a lock requires a person to use their vision
to locate the lock, proprioception to position their hands appropriately, and touch to insert the key
smoothly. It is no stretch of the imagination, therefore, to believe that robots could also benefit from
a similar combination of these sensor modalities. Recent improvements in sensor, computer, and
robotic technologies have made this "human-like" sensor integration possible. As robots move from
rigidly controlled environments into unstructured real-world environments, their state representation
must be robust against noise and other environmental perturbation which is very difficult with as
single sensor. Independent sensor modalities all have their own weaknesses. Visual sensors such as
cameras or LIDAR can be occluded and proprioceptive sensors can fall victim to error. Combining
these modalities into a single state representation will create a representation that is robust to the
errors of any one modality.

The simplest way to create this state representation would be to concatenate readings from all sensor
modalities into a single, large feature vector. This state representation would contain all sensor
modalities but would lack the ability to encode useful correlations between sensor data. We can
use deep learning to parameterize a feature encoder which learns a compact state representation
that encodes useful sensor correlations as well as task-specific information. This compact state
representation can be passed into a reinforcement learning algorithm, which we do here, to solve a
given task.

In addition to vision and proprioception, a good sense of touch is essential for humans to complete
manipulation tasks. We can imbue robots with a similar sense of touch using visuo-tactile sensors
such as Johnson et al. [2011]. These sensors use a camera beneath a deformable gel to represent
whatever the object is touching as an image. When the sensor is touched, the gel deforms and
the camera’s image changes. Using libraries such as Tacto [Wang et al., 2020], we can simulate
visuo-tactile sensors for faster training in simulation.
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Figure 1: Visualizations of Tacto readings at different stages of the peg insertion task.

In this project, we combine visual, proprioceptive, and tactile sensor modalities to learn a state
representation for a peg insertion task parameterized by a neural network. Our objective is to teach
a robot arm with a parallel jaw gripper to use the modalities to successfully navigate a peg into an
open hole more efficiently and robustly than it would be able to without tactile sensing. Although we
expected that this combination of sensor modalities would create a state representation that could
train a successful model, we found that our reinforcement learning agent was unable to meaningfully
learn its environment.

2 Related Work

Making Sense of Vision and Touch [Lee et al., 2019] has shown the benefits of combining vision,
proprioception, and force-sensing into one state representation for use in the peg-insertion task.
This merging of vision, proprioception, and force-sensing modalities to complete a task creates a
quasi-human policy.

Information from visuo-tactile sensors has been shown to be useful in high-dexterity
manipulation tasks such as cable manipulation [Y. She and Adelson, 2020] and
USB connector insertion [Li et al., 2014]. Both of these papers use images from
Ghttps://www.overleaf.com/project/60abOb0578a1430051d3c24celSight sensors with heuris-
tic rather than learning-based methods to solve their respective tasks. These types of solutions work
well in highly controlled environments such as a lab setting but can be brittle to real-world conditions.

Our project seeks to explore the benefits of adding the tactile modality to the multi-modal state repre-
sentation in Lee et al. [2019]. We replace the wrist-torque force encoder in their state representation
model with our own encoder for data from visuo-tactile sensors. The information from the tactile
sensors has the potential to improve the state representation and, by extension, the policy learned in
[Lee et al., 2019]. We found, however, that our modifications to the existing encoder were not enough
to achieve satisfactory results in our environment.

3 Methods

This project builds directly oaee et al. [2019] and uses its methods to create a feature encoder that
encodes information from visual, proprioceptive, and tactile modalities into a vector of length d (which
in this case is 128). The feature encoder is composed of four individual encoders, each paramaterized
by a neural network: a color image encoder, a depth image encoder, a tactile encoder, and a
proprioception encoder. The color encoder is a convolutional neural network with six convolutjgnal
layers and a single linear layer. The color encoder takes in a 224x224 pixel RGB image and out a
2 x d vector. The depth encoder is also a convolutional neural network with six convolutional layers
and a single linear layer. The depth encoder takes in a 224x224x1 depth image and outputs a2 x d
vector. The proprioceptive encoder is a fully connected neural network with four linear layers each
with a leaky RELU activation function with a cutoff of 0.1. The proprioceptive encoder takes in a
vector of length 8 featuring the position, velocity, and roll angles of the end effector and outputs a 2 x
d vector.
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Figure 2: Network architecture for representation learning. Figure and model adapted from Lee et al.
[2019]. We replace the force-torque input with readings from Tacto sensors. The Tacto images are
passed through convolutional layers, concatenated, and passed through linear layers before being
passed to the sensor fusion module.

The Tacto encoder takes in four images, two 120x160x1 depth images and two 120x160x3 RGB
color images, from the left and right tactile sensors respectively, and outputs a 2 x d vector. The
Tacto encoder is the most complex out of the four encoders. The color images are each encoded by a
convolutional neural network with three convolutional layers and one linear layer into two d-length
vectors. These vectors are concatenated and multiplied by another linear layer followed by a leaky
RELU activation function yielding a d length vector. The two color images are both processed by
the same convolutional network to capture the fact that images from both tactile sensors will have
similar underlying features. Depending on how the manipulator grasps an object, the images in the
left and right sensors can be switched. Using the same convolutional encoder for both images allows
us to capture this property of our robot. Despite disregarding orientation within our convolutional
encoders, our model uses the post-concatenation linear layers to learn features corresponding to the
orientation of the manipulator. The two depth images are processed in a similar fashion, yielding
another d length vector. These two vectors are then concatenated and multiplied by two linear layers
each followed by a Leaky RELU activation function to output a 2 x d length vector. These four 2 x d
vectors are combined into a a single d-dimensional state representation vector using the Product of
Experts method as outlined in [Lee et al., 2019].

The state representation vector is trained, using self-supervision, to encode information about its
environment. The model predicts the datapoints referenced in Table 2 for each timestep conditioned
on the action taken within that timestep.

In addition to the datapoints referenced in Table 2, the self-supervised model must also learn to
predict whether its external camera images are time-aligned with its Tacto images and proprioception
measurements. This time-alignment prediction addresses the fact that there are redundancies between
the different sensor modalities and encourages the model not to disregard one over the othe
[Lee et al., 2019]. The learned state representation vector is used as the observation input into a
reinforcement learning policy parameterized by a two-layer MLP. After the state representation is
learned, the encoder parameters are held constant while the policy is trained using Trust Region
Policy Optimization (TRPO) [Schulman et al., 2015].

3.1 Dataset and Features
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Figure 3: Reward curve from agent trained using state representation.
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Figure 4: Reward curve from agent trained using state representation without Tacto.

The data is generated from rollouts of a heuristic peg insertion policy and a random peg insertion
policy within our simulated environment. Tables 1 and 2 detail the recorded datapoints along with
their dimensions. These datapoints are recorded once at every step of the policy. The Tacto color and
depth images each consist of two images, one for the left and right fingers of the gripper respectively
making four Tacto images in total.



Data Point Size
I I

RGB Color Image 224x224x3
Depth Image 224x224x1
Tacto Color Images  2x120x160x3
Tacto Depth Images  2x120x160x1
Proprioception 8

Table 1: Inputs to State Representation Encoder

|| Data Point Size ||
Optical Flow 224x224x2
Action 3
Contact Next (boolean) 1
Next end-effector position 3

Table 2: Datapoints for self-supervised training

Before being passed into the encoder, all color images are scaled between zero and one (by dividing
each individual value by 255). The pixels of depth images are filtered to fit in the interval (1077, 2)
with any values outside this interval set to zero.

4 Experiments

4.1 Simulated Environment

Both our data collection and our experiments are completed in a PyBullet simulated environment. The
simulated robot is a Rethink Sawyer with a WSGS50 gripper. Embedded into the fingers of the gripper
are two visuo-tactile sensors, called Tacto sesors, which are simulated using the Tacto library [Wang
et al., 2020]. The simulation is packaged by Perls2, a robotics framework [Kulkarni et al., 2020],
into a repeatable environment for reinforcement-learning experiments. The environment contains
the robot, a peg, as well as a box with a hole into which the peg is to be inserted. The environment
is initialized with the box at a random position and the peg at a random position at the top of the
box. At each timestep, the agent must take an action which determines the motion of the robot arm.
In our case, the action specifies a delta to move the end effector in Cartesian space [Az, Ay, Az].
Once the robot completes the peg insertion task or fails at completing the task within given time, the
environment is reset and the peg and box positions are randomly reinitialized.

4.2 Results

We trained the state representation encoder on our dataset of examples from both random and
heuristic policies for 50 epochs before training the RL agent to solve the peg-insertion task on.our
state representation. Contrary to our expectation, the agent did not appear to learn much, if anyteg,
over the course of training.

5 Conclusion

Though our results were disappointing, it has informed us that the reinforcement learning problem
is more difficult than we initially estimated. Our current hypothesis as to why our reinforcement
learning agent failed to learn is that the existing model that we modified from [Lee et al., 2019]
was not tuned to work with our data or our environment. In the future, we plan to rebuild our own
self-supervised state representation from first-principles rather than simply try to retrofit an existing
state representation. This will also entail re-evaluating the data we collected and perhaps collecting
new data. Despite the results not being favorable, this serves as a suitable starting point for our future
research.



6 Contributions
Mason Llewellyn worked on this project under the guidance of Kaylee Burns. This is a part of a larger

research project which investigates learning multimodal state representations for robot manipulation
tasks.

7 Code

The code for this project can be found within two GitHub repositories a repository for the
multimodal state representation encoder and a repository for the peg insertion task environment.
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