Using Machine Learning Models to Classify Pneumonia from X-Ray Images

Alexander Lerner Oscar O’Rahilly Jasper den Otter

1. Introduction

Pneumonia is the fourth leading cause of death globally,
and in 2016 alone nearly 3 million people lost their lives
due to pneumonia complications. Additionally, COVID-
19 induced pneumonia has been one of the main reasons
the virus is so deadly. When we combine this with the
fact that a country such as Kenya, with over 43 million
citizens, has only 200 radiologists to serve the needs of the
entire population, it becomes clear that something needs
to be done to combat the inequality in access to healthcare
professionals we see globally.

As a result, in this paper we explore different Machine
Learning implementations that can help classify pneumonia
from X-ray scan images. We will be looking at a Naive
Bayes classifier, SVM classifier, a Convolutional Neural
Net (CNN) classifier and finally a Transfer Learning based
classifier. Our input is in the form of X-ray scan images,
and we output a classification of the presence of pneumonia.

2. Related Works

2.1. Image Feature Extraction:

In his 2016 paper titled “Image Classification Using Naive
Bayes Classifier” Park Discusses various approaches for
image feature extraction, which can then be fed as inputs to
Naive Bayes for an image classification task. In his paper,
Park compares the discrete cosine transform (DCT), local
binary pattern (LBP), covariance descriptor, and wavelet
transform as feature extraction methods for a 4 class classi-
fication task. Park identifies DCT as the best feature extrac-
tion method since it even beats many of the nueral network
classification models he tried. Thus we decided to similarly
use the discrete cosine transform to extract features for our
Naive Bayes classifier

2.2. Data Augmentation:

Perez and Wang (2017) discusses the usefulness of perform-
ing data augmentation on image data sets. One use for data
augmentation is in the medical field where finding large data
sets can be challenging, particularly for use in diagnosis and
classification. As a result, we have decided to perform ge-
ometric augmentation on our images (transformations that
involve mapping pixels to other locations) as they are known

for their simplicity in design, ease of use, and quick runtime.

2.3. Convolutional Neural Networks

The Krizhevsky et al. (2012) architecture won the ImageNet
competition in 2012. While it is large-scale and computa-
tionally expensive, we took certain features of its architec-
ture in designing our CNN. Their use of max-pooling layers
was useful in reducing overfitting in their model, and as a
result we implemented them after every activation function
in our own model.

2.4. Optimization:

In class, we discussed the basic stochastic gradient ascent
rule, § := 6 + aVy£(0). Other solutions to the loss mini-
mization problem, such as RMSprop and Adam (Kingma
and Ba (2014)) offer faster and more efficient calculations
for first-order gradient descent, based on approximation of
lower order moments. We experimented with both in our
models.

2.5. Transfer Learning

Razavian et al (2014) provide a strong argument for the use
of Transfer Learning in our image classification problem.
By using an existing trained high-performance model, and
using it on a separate classification problem, we can still
observe very strong performance. This is a result of generic
descriptor on a pre-trained CNN. Whereas Razavian et al
decided to use OverFeat for image object classification,
we have decided to use a similar approach with the CNN
model DenseNet161 for its balance of high performance
and reduction of memory usage. DenseNet161 uses half the
number of parameters and FLOPs as competing state of the
art models like ResNet.

3. Data set

Using X-ray scan datasets from Kaggle, we split data into
a training, validation and testing set (roughly 70%, 15%,
15% split, respectively). We had 5856 images, resulting in
a respective 4099, 878 and 879 split.

Data Augmentation: In order to prevent the issue with

Using Machine Learning Models to Classify Pneumonia from X-Ray Images

overfitting, we experimented with data augmentation.
Specifically, we transformed images in the data set with
random inverting, rotation, translating and grayscaling. We
experimented with different resizing techniques depending
on the model, which will be discussed in the results section.

Figure 1. Standard Image from Data Set

ENEPY RN
PR
SRR L)L |

Figure 2. Transformed Images used in CNN and Transfer Learning

Our data set was more heavily weighted towards X-Rays
with positive classifications for pneumonia. Specifically,
there were 73% pneumonia labeled images, and 27 % nor-
mal labeled images. As a result, simple accuracy metrics
are not descriptive enough in discussing the effectiveness of
our models. In our results section we will elaborate further
on the metrics we used to assess our model accuracy.

4. Methods

4.1. Naive Bayes

The Model: While Naive Bayes is one of the simplest algo-
rithms for machine learning, we thought it would be a good
place to start when building our pneumonia detection model
since it would allow us to learn more about the dataset and
give us a baseline accuracy that we could improve on with
more complex models. We tried several feature extraction
techniques as described below to generate features to feed
to our model during training and testing.

How it works: The Naive Bayes model works by simplify-
ing a classification task using the Naive Bayes assumption.

The assumption is that the probability of each feature occur-
ring is conditionally independent of all other features given
the class. While this is clearly not correct, it allows for a
massive simplification that actually works well in practice.
The simplification allows a computation for the probability
of some input X belong to come class C to be P(class =
C|features = X) =[], P(class = C|features; = X;).
This expression can be computed much more easily by
counting the number of times feature i occurs in class C
vs the total number of times feature i occurs at all.

Image pre-processing: In order to prepare our dataset for
training on the Naive Bayes classification model, we first
had to process our images and give them a standard format.
To do this we converted all the images to grayscale, and then
resized them to be 100 x 100 pixels to keep the dimensions
constant across images.

Feature extraction: Since the Naive Bayes model is rela-
tively simple, it is not a powerful enough model to classify
images based solely on pixel data as is the case with more
complex deep learning models. Thus a key step in using
Naive Bayes for image classification is choosing an effec-
tive feature extraction technique to derive trainable features
from the pixel data of the images. Two techniques that we
tried for this task are discrete cosine transform (DCT) and
local binary pattern (LBP). DCT is commonly used in image
compression where images are represented as a weighted
sum of cosine waves, and the original image can then be
recovered by calculating this sum. DCT is performed on an
image by looking at a sliding square of pixels (usually 8 x
8), and performing the local DCT calculation. Thus the 100
x 100 pixels has a grid of 100 x 100 DCT values after the
calculation. We experimented with windows of size 4, 8,
and 16.

DCT of the Pneumonia image

Figure 3. Discrete Cosine Transform example

4.2. Support Vector Machines

The Model: In addition to Naive Bayes, the SVM model
is commonly used as an early benchmark given its relative

Using Machine Learning Models to Classify Pneumonia from X-Ray Images

simplicity, and success in a wide variety of tasks. We ex-
perimented with three different kernels: linear, degree 3
polynomial, and radial basis function (rbf).

How it works: SVM models for classification tasks gener-
ally work by trying to find a line or hyperplane that separates
the data points of both classes. While the data does not need
to be perfectly separable, SVMs define the best separating
line as the one with the widest margin to the nearest data
points of each class. SVMs can also be used in non-linear
cases by defining a kernel function that creates new relation-
ships between features to better separate the data. Similarly
to the Naive Bayes model, we used DCT as a feature extrac-
tion technique to feed to our model.

4.3. Convolutional Neural Network (CNN)

A Convolutional Neural Net is the gold standard neural net-
work for computer vision. Rather than passing the input
through linear layers followed by non-linearities, a convolu-
tional neural net uses filters to convolve the training image
before passing the results through non-linearities. The ad-
vantage of this is that we can preserve the spatial structure
of the inputs as we are not flattening them like we do in a
purely affine case.

The Model: We experimented with a variety of different
architectures for our CNN. Our first iteration of the CNN
was as follows,

(5x5) Convolution — ReLLU — (3x3) Convolution — ReLU
— Affine — Softmax

Whilst this provided respectable results (total accuracy of
85%) we noticed that once we applied transformations to
our training set, the accuracy began to dip. In order to
rectify this, we altered our CNN to add a Maxpool layer
after every activation function in our CNN. Maxpool layers
make the model more robust when it comes to translational
invariances within the training images, producing a model
better at generalization. Thus, it made a lot of sense to try
inserting these more within our CNN. Our new model was
thus as follows.

(5x5) Convolution — ReLLU — MaxPool — (3x3) Convolu-
tion — ReLU — MaxPool — Affine — Softmax

Optimizer: Choosing the right optimizer to perform gradi-
ent descent is very important in any deep learning task as
they can vastly improve the rate at which your network is
able to arrive at an optimal solution. Due to its impressively
fast convergence capabilities, we originally began using the
Adam optimiser, as discussed earlier. However, we found
that Adam’s optimization was too aggressive for our model,
often overshooting and causing the loss to jump around
rather than steadily converge. Because of this, we decided
to switch to a slightly less aggressive optimiser, RMSprop.

As a result of switching to RMSprop, we saw much more
steady declines in our loss and an overall improved accuracy
rate.

Furthermore, we also increased the size of the images passed
in from our dataset from 100x100 to 258x258. This helped
boost our accuracy in the deep learning approach as the
convolutional model was able to extract more expressive
features.

Hyperparameter Tuning: The main choices regarding hy-
perparameters we wanted to investigate were the learning
rate, number of epochs, and hidden layer dimensions.

In order to determine the optimal learning rate, we ran our
model on a variety of different learning rates, ranging from
0.01 to 0.00001. After rigorous testing, we found that a
learning rate of 0.001 provided both the highest accuracies
with some of the fastest convergence times. An analysis
of the accuracies over time for the rates 0.01, 0.001 and
0.0001 are shown below. Note that for the accuracy plots,
each iteration represents 10 iterations, so iteration 20 on the
graph is actually 200. As can be seen from the accuracy
curves below, learning rates of 0.01 and 0.00001 are not very
good hyperparameters for our model, with 0.01 producing
no improved accuracy from the first iteration. For 0.001 and
0.0001 we see that at around 325 iterations the accuracies
begin to level out. As each epoch for us is 125 iteartions
we thus decided that we should use just 3 epochs in training
our CNN as more than this actually resulted in increased
overfitting and a drop off in validation accuracy.

CNN Loss History - Learning Rate: 0 01 CNN Loss History - Learning Rate: 0.001

0 50 100 150 200 250 30 350 400 0 S0 100 150 200 250 300 350 400
Iteration Iteration

CNN Loss History - Learning Rate: 0.0001
06 08
0s 07

04 08

0 50 100 150 200 250 300 350 400 0 0 100 150 200 250 300 350 400
Iteration Iteration

CNN Loss History - Leaming Rate: 1e-05

CNN'Accuracy History - Leaming Rate:0.01 CNN Accuracy History - Learning Rate: 0.001

0 ons
00

06 0875

g # ogs0
2 om0
o
050

0725
0 5 1 15 20 % 0 ¥ 4 0 5 10 15 2 25 N B &

Using Machine Learning Models to Classify Pneumonia from X-Ray Images

CNN Accuracy History - Leaming Rate: 0.0001 CNN Accuracy History - Learning Rate: 1e-05

—
as00 \/
0850 ‘; 080 \/

< o800

0750 074

0725

The hidden layer size was also determined in a similar way.
We eventually settled upon just two hidden layers with chan-
nel sizes 24 and 12 respectively. We found this combination
provided the highest accuracy whilst also minimizing over-
fitting.

4.4. Transfer Learning

Transfer learning is an exciting learning technique that lever-
ages the use of large pretrained models to aid with a variety
of different learning tasks. When it comes to computer
vision classificiation, we can use state of the art image clas-
sification models, like ResNet and AlexNet, to aid with
image classification tasks. What makes transfer training
so powerful and widely used within the computer vision
community is that we can use these pretrained models to
classify images that they weren’t even trained, so in our case
X-rays.

When deciding how to integrate a pretrained model into our
classification task, we had a few things to consider. Firstly,
we had to decide which pretrained model to use. Secondly,
we needed to determine what sort of architecture to append
to the pretrained model in order for it to work with our
specific classification task.

Model: We settled on the DenseNet161 model, notably
due to its exceptional performance to parameter ratio. As
mentioned earlier, DenseNet161 uses only around half the
number of parameters as other state of the art models like
ResNet whilst simultaneously providing impressive classifi-
cation accuracy. The result of using DenseNet161 over other
models is improved computational efficiency and increased
training speed.

Classification Layer: As our dataset is not very large, we
decided to freeze the whole of the pretrained model and
simply add a linear classifier at the end that takes the ouput
of densenet161 as its input and produces outputs two classes
(Normal or Pneumonia). In this way, we are essentially
using the pretrained model as an extremely powerful feature
extractor and then leveraging this information to make our
classificaton. The architecture is shown below.

Densenet161 — Affine — Softmax

Note that as we have freezed the layers of our pretrained
model, we are only modifying the weights in our linear layer
in our backwards pass.

5. Results
5.1. Naive Bayes

The success of our Naive Bayes model was varied based
on our feature extraction technique. The discrete cosine
transform was the most successful, with the 4 x 4 window
transformation resulting in an overall accuracy of 85.1%,
and the 8 x 8 window achieving an accuracy of 83.9%.
On our test set the Naive Bayes model did not seem to
massively exploit any biases in our dataset as can be seen in
the confusion matrix in figure 5.

Naive Bayes Test Set Confusion Matrix

Normal 222 58

True label

Pneumonia 64

Normal Pneumonia
Predicted label

Figure 4. Naive Bayes Test Set Confusion Matrix

5.2. Support Vector Machines

When using the same feature extraction techniques as our
Naive Bayes model, the SVM approach was not as effective.
The linear and RBF kernel SVM models both scored an ac-
curacy of 75.0% on the test set, while the RBF kernel model
performed slightly better with an accuracy of 80.1%. When
we account for Pneumonia to Normal class size discrepancy
in our dataset, we realize that our SVM model was barely
improving on a model that always predicts pneumonia. The
confusion matrix is below.

SVM Test Set Confusion Matrix

Normal 129 148 400

True label

Pneumonia 14

Normal Pneumonia
Predicted label

Figure 5. SVM Test Set Confusion Matrix

5.3. Convolutional Neural Network

As we expected, our CNN model significantly outperformed
the more simple Naive Bayes and SVM implementations.

Using Machine Learning Models to Classify Pneumonia from X-Ray Images

Furthermore, through data augmentation and Maxpooling,
we were able to significantly reduce the problems we previ-
ously had with overfitting. Our final test accuracy for our
CNN was 92.6% and our train accuracy was just slightly
higher at 94.3%. The CNN managed to successfully classify
pneumonia much better than any other model we trained;
however, it’s classification accuracy for Normal was much
worse than the transfer learning model. The confusion ma-
trix can be seen in figure 9.

Confusion Matrix for CNN: Learning rate = 0.0001

300

200
17

100

Normal

Tue label

Pneumonia

Normal Pneumonia
Predicted label

Figure 6. CNN Confusion Matrix with learning rate = le-4

5.4. Transfer Learning Model

The transfer model consistently provided the strong perfor-
mance, with an overall accuracy of 93.3% across our test
set. It also performed notably well in classifying Normal, a
problem which all of the other models ran into due to the im-
balance of data in our training set. One concern is the time
it takes to train this model. As DenseNet161 is such a large
pretrained model, training it on our dataset took around 4
hours. The confusion matrix is shown below (figure 7) and
highlights the strength of the Transfer model in dealing with

Normal classification.
300
x 611 200
100

Normal Pneumonia
Predicted label

Normal

Tue label

Pneumonia

Figure 7. Transfer Learning Model Confusion Matrix

Saliency Map: Saliency maps provide us with a way of
visualizing how a model made a classification decision. By
looking at the strength of the gradient flow for each pixel
in an example image, we can see which pixels were the
most important in the model’s classification decision. These
pixels are shown in red, with greater intensity corresponding

to greater importance in the classification. The results of the
saliency map makes sense. The Transfer Learning model
appears to be looking at the chest cavity the most (see figure
11), ignoring the spine, the heart and the area below the
chest cavity. This is consistent to where a human doctor
would look, which is incredible considering DenseNet161
wasn’t even trained to classify pneumonia.

= 1

e Y
£ &

F.

Figure 8. Example Image and Corresponding Saliency Map

6. Conclusion

To summarize our findings, we found Transfer Learning to
be an incredibly powerful model and the most accurate. It
was an improvement over our CNN model (second-best),
and in terms of accuracy offered less false positive classi-
fications of pneumonia (4.2% vs 5.7%) in the context of
our data set, where pneumonia examples are more prevalent.
More naive models offered computationally inexpensive
solutions with a large accuracy tradeoff. The role of ma-
chine learning in medicine is an exciting frontier because
of the scalability and deployability of AI models. Medical
Al also has some key limitations such as the sparse avail-
ability of data, susceptibility to ethnic bias, and the need for
high accuracy. Through our experiments we have tried to
tackle these issues by experimenting with different types of
machine learning models, augmenting our data to improve
generalization, and tweaking hyper parameters to continu-
ally drive up our accuracy metrics. We are incredibly happy
with where we were able to bring our models, and would be
excited about the opportunity to learn more about cutting
edge strategies in radio graphical image classification so that
we can continue to improve. Some extensions of our project
that we would be interested to investigate are how well our
models generalize to data sets from other ethnicities, as well
as how our models could be tweaked to classify other lung
conditions beyond pneumonia using a multiclass output.

7. Contributions

Work done amongst the team members happened almost
entirely in the presence of all three members, with the occa-
sional absence of one member. In other words, we always
worked either all together or in pairs, so there was no clear
work division.

Using Machine Learning Models to Classify Pneumonia from X-Ray Images

8. References

1. Kingma, Diederik P, and Jimmy Ba. “Adam: A Method
for Stochastic Optimization.” Proceedings of the 3rd

International Conference on Learning Representations
(ICLR), December 24, 2014.

2. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hin-
ton. “Imagenet classification with deep convolutional
neural networks.” Advances in neural information pro-
cessing systems 25 (2012): 1097-1105.

3. Park, Dong-Chul. “Image Classification Using Naive
Bayes Classifier.” International Journal of Computer
Science and Electronics Engineering (IJCSEE) 4, no.
3 (2016).

4. Perez, Luis, and Jason Wang. “The effectiveness of
data augmentation in image classification using deep
learning.” arXiv preprint arXiv:1712.04621 (2017)

5. Razavian, Ali Sharif, Hossein Azizpour, Josephine
Sullivan, and Stefan Carlsson. “CNN Features
Off-the-Shelf: An Astounding Baseline for Recog-
nition.” 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops, 2014.
https://doi.org/10.1109/cvprw.2014.131.

