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1 Introduction

Language contains rich information which helps us understand the world. Human can easily identify
"cars" by learning the descriptions of "cars" without going through thousands of pictures. By encoding
abstract concepts into natural language, human can easily generalize to unseen samples even if the
samples contains noises. In this project, we explore an under-explored multi-modal setting where
ground truth natural language descriptions are available during training time but unavailable during
test time. We choose few-shot classification [3] to test model’s ability to quickly generalize to new
samples. Previous work has demonstrated that architectures such as Convolutional Neural Network
(CNN) with Language Models as bottleneck [1] or regularizer [2] can excel at this task. With the rise
of Transformer [3], Transformer-based models were developed to tackle multi-modal challenges. In
this project, we aimed to adapt LXMERT [4] to our multi-modal few-shot classification setting and
analyze the performance of various training strategies.

a white shape is
left of a yellow
semicircle

Figure 1: A illustration of our
version of few-shot classifica-
true | tion problem [1]. N=1,K =
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1.1 Few-Shot Classification

In a few-shot learning problem, the dataset consists of thousands of tasks. Each task has a support
set that contains NV classes. Each class has /K images. Each task also has a query set that contains
images that may or may not from the same classes as the support set. For each query image, the
model predicts which class the image belongs to. Captions are available in the training split only.

2 Related Work

A great amount of research work are focusing on bridging linguistic and visual information, such as
visual reasoning [5], visual question answering [6] and language assisted visual classification, etc.

2.1 Language assisted visual classification

He and Peng [7] proposes two-stream model combining vision and language for fine-grained image
classification but it doesn’t have transfer. DeViSE [8] is a deep visual-semantic embedding model
for zero-shot prediction. Xing etc [9] proposes a model to enhance metric-based few-shot learning
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methods, but captions are provided for both model at test time. Learning with Latent Language model
[1] and Language-shaped learning (LSL) model [2] for few-shot classification have no language at test
time where the first model use language as a bottleneck and the second one uses visual information
shaped by language to avoid the bottleneck.

2.2 Transformers based vision-and-language model

Most state-of-the-art transformer based multi-modal models follow a similar structure: each modality
is assigned with one encoder, followed by another encoder that aggregates outputs from both encoders.
Most architectures employ some kind of convolution layer as the initial feature extractor. Transformer
layers will then attend to different tokens and aggregate the information by aligning visual tokens
with language tokens.

3 Dataset and Features

We use the dataset ShapeWorld [10] as our training and testing dataset which contains 9000 training,
1000 validation, and 4000 test tasks (Figure 2). Each task is consisted of 4 images showing a visual
concept with English language description. The visual concept describes how two objects are spatially
related to each other with their color and/or shape information. There are also 2 to 3 shapes presented
as the distraction for the task. Given a query image, our task is to predict whether it belongs to the
virtual concept or not. The figure below shows an example of out tasks. The support data consists of
images with the text on the right describing the content of the images. The model will tell whether
the query image obtain the rule described in the text as the support images.
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4 Method

4.1 LXMERT

LXMERT has demonstrated state-of-the-art performance on many multi-modal tasks such as Visual
Question Answering. LXMERT utilizes transformers [3] as its backbone architecture. One of the key
improvement of LXMERT compared to generic Transformer-based models is that LXMERT is able
to take in image features and text tokens together. The image features are packed in to a sequence
and passed into LXMERT similar to sentences. The transformer layers allow LXMERT to attend
to feature tokens across modalities. A special positional encoding was added to allow the model to
identity whether the input is image or text.

In the few-shot learning setting, instead of using object-level feature as done in the original work, we
experimented with two visual feature extraction method:

* using the output of a pre-trained 16-layer VGGNet (VGG16) as features [11]

* using raw image patches (we are breaking images into 7 x 7 patches).

We use Bert Tokenizer to tokenize the descriptions. Under the first setting, each image is correspond-
ing to one visual token. Consequently, each training task has one visual sequence which consists of
visual tokens from both support set and query set. We use the output of LXMERT’s last layer as the
hidden representation of a token. We encode the support set by taking the mean of support images’
representations. Similarly, we encode the query set by taking the query’s image’s corresponding
representation. For caption, we follow the Bert style by taking the representation of the [CLS] token.



We experiment with taking the mean of caption sequence instead of using the [CLS] token. There
is no significant difference. A classification head takes in visual representations of the support set
and the query set, then predict whether they share the same visual concept. x,, denotes the features
extracted by VGG from the nth image. w,,, denotes the ith token of concept description. rep denotes
LXMERT.

p = classifier(rep(zs1...xsn), rep(zq1), rep(ws...wy))) (1

Under the second setting, we encode each image separately: each visual sequence consists of only
one image’s patches. We then predict by calculating the dot product between the representation of
support and query set. 3 denotes the kth patch. In both setting, we take p > 0.5 as the threshold to
predict positive.
1 XK
p= [7d rep(Tst...Tok, W1...wy) - 7€P(Tq1...Tqk) 2)
s=1

We optimize our model with binary cross entropy loss.

Loss == _(yilog(p:) + (1 = yi)log(1 — pi)) 3)
i=1
In terms of optimizer, we use the Bert version of Adam. We observed that warm-up steps are
necessary for LXMERT to learn. The reason might be that initial gradients are bias due to the bias
of the mini-batches. Therefore, a large learning rate will cause to LXMERT model to stuck in an
undesired local minima. We use linear warm-up and learning rate decay: learning rate starts with 0
before gradually going up then going down linearly.

4.2 Mixed Modality Training

Since we don’t have access to captions during testing, we have to train our model to be capable
of inference without the extra modality. Unlike LSL [2] or L3 [1] where language is used as extra
supervision or bottleneck, our approach directly use language as input. We will illustrate some
important properties about transformer strcuture in the later section.

4.2.1 Mixed Modality Training as Multi-Task Learning

One technique we experiment with is training mixed modality problem as multi-task learning. Instead
of having one classification head only, we added one extra classification head that takes in caption’s
representation and query image’s representation. We hypothesize that by allowing direct comparison
between visual representation and language representation, the vision encoder can learn to attend to
the spatial relationship that’s encoded in the caption.

4.2.2 Random Sampling

One of the simplest but highly effective method is random sampling. During training, we randomly
decide whether to train our model with ground truth caption or support image. We will use separate
classification head for two cases as mentioned above. Intuitively, since we are not going to have
captions during test time, by training without captions we hypothesize that model will rely less on
the extra information thereby be able to make the correct prediction without language support. Our
results show that this step is necessary for LXMERT to achieve a high performance.

5 Experiments/Results/Discussion

5.1 Experiments

Across all experiments, we use Se-6 as our learning rate and a 0.05 warm-up ratio (5% of total epochs
are used as warm-up steps). Our batch size is 100 for the first visual feature extraction setting, which
is the same as the LSL and 24 for the second setting. This difference is largely due to memory
constraint since LXMERT will produce hidden outputs for all visual tokens and the visual sequence
under the second setting is much larger than the first one (6 vs 49). We train our models with 800
epochs. Based on our observation, all settings can converge before reaching the end. We use accuracy,
precision, and recall as our main quantitative evaluation metrics.



5.1.1 Baseline

Our baseline model is LSL, an end-to-end model which use the visual representations shaped by
language[2]. We also compared the performance across training strategies, specifically the availability
of caption.

5.1.2 Oracle Language

Although previous works have demonstrated that utilizing language as bottleneck or regularizer can
improve models’ performances, it’s unclear whether presenting language as input can improve model
performance. To illustrate the effect of correct description, we feed the model with the ground truth
concept description of the support set and the query images. This setting’s performance provides an
indicator of the potential upper bound the model can achieve due to the presence of perfect captions.
The model’s performance was boosted by 24 %. Additionally, model training is much more stable
and can generalize better. Figure 5.2

5.2 Results

The performances of all settings under the first feature extraction method are recorded in Table
[2]. As shown in the table we are able to match LSL’s performance (67.29 % accuracy) even
though our model doesn’t use language as supervision. This illustrate an interesting property of
transformer-based multi-modal architecture: using extra modality as input can improve performance
on missing modality setting. In terms of success of training, random sampling is essential. This
observation aligns with our hypothesis that it’s necessary to to train under the same setting as testing.
Unfortunately, multi-task is not as beneficial as expected. This phenomena indicates that the language
encoder without additional gradient flow (provided by extra classification head) can be trained as
well as one with. This is reasonable since the last few layers of LXMERT focusing on aggregating
information across both modalities.

Oracle Captions Image only Random Sampling Multi-Task Only Random Sampling + Multi-Task

Accuracy 77.94 62.89 66.94 51.70 66.43
Precision 79.55 61.65 67.27 52.73 64.50
Recall 74.67 67.01 65.23 46.21 73.49
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Table 1: Test accuracies comparison between different settings using VGG features

test_acc, train_acc, val_acc

Figure 3: Training behaviors
of selected methods

With the second feature extraction method, we experimented with oracle caption and image only
setting. Unlike the first feature extraction method, oracle captions’ presence doesn’t improve the
performance of the model. This is very likely caused by the dominance of visual modality since vision
encoder receive much more training signals than language encoder due to a much longer sequence
length. We conclude that language has limited effect when the second feature extraction method is
employed. This result plus the performance of the oracle setting of the first feature extraction method
indicated that one way to achieve high accuracy is potentially let one modality dominate the other.
In the first oracle caption setting, we are only feeding query image and captions into LXMER: the
language sequences are longer than visual sequence. However, language dominance is able to achieve
a much higher accuracy compared to visual dominance, demonstrating the value of captions.



Oracle Captions Image only

Accuracy 67.06 68.75
Precision 62.72 64.16
Recall 84.59 85.72

Table 2: Test accuracies comparison between different settings using image patches

5.3 Discussion

We selected few samples with wrong prediction in the test dataset for analysis from model trained
with random sampling. One of the tasks is shown in figure 4 and 5 below. The support images’
concept are aligned with the caption. In the query image, there is a shape above rectangle but its
green. It’s hard for model to learn the color different so it results in error. For task in figure 5, concept
in support images and query image are all aligned with the caption but it is still predicted wrongly.

(a) support (b) query

Figure 4: Task with caption: A yellow ellipse is above a blue semi circle.

(a) support (b) query

Figure 5: Task with caption: A shape is above a blue rectangle.

6 Conclusion/Future Work

In this report, we demonstrate a new method on how training with multiple modalities can improve
performance on a missing modality setting. We also illustrate an important property of transformer-
based multi-modal model: performance improvement can be achieved even without additional
supervision from other modality. Additionally, sampling is essential for the model to generalize
during testing when one of the modality is missing. With additional resource, we would like to
experience a different visual feature extraction method that has been applied in many other tasks:
using object detection model to extract objects from the image and use the hidden outputs are feature

sequences.



7 Contributions

* Contribution of team members:
Fang Qin: Evaluation and training of the LXMERT model; visualization of the results
Songlin Li: Implementation and training of the LXMERT model; setting up LXMERT for
ShapeWorld Dataset

* TA : Jeff Z. HaoChen
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