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Abstract

Manual land cover mapping is a tedious and expen-
siwe process. Automation has met with limited success
because land use does not look the same from one lo-
cation to another. This paper will explore options for
augmenting data to tmprove land use prediction over
a wide area, including using multiple images from the
same locations, infrared data, and prior knowledge of
the region.

1. Introduction

Manual land cover mapping is a tedious and expen-
sive process. To date, attempts to automate have met
with limited success; usuallly failing to generalize well
from one region to another. In simple terms, when
the distribution of the labels changes, model accuracy
suffers. Recently, there has been success using older
and cheaper low resolution images and labels to im-
prove prediction accuracy for the high resolution im-
ages. The techniques are often combined with, at this
point, relatively primitive image segmentation archi-
tecture. In this paper we will combine state of the art
deep learning networks for image segmentation with
several preprocessing strategies to get near state of the
art results. This work will be done using satelite data
from the Chesapeake Bay region, which extends from
New York and Pennsylvania down to Virginia and in-
cludes Maryland, West Virginia, and Delaware but not
New Jersey.

In the interest of making the model as general as
possible, we will use the smallest training set practical,
namely the state of Delaware. The base model will be
trained and validated on Delaware data. We will then
extend the validation set to cover all states, and the
training data to include multiple years, infrared data,
and a lower resolution set of categories from an earlier
dataset.
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2. Related Work

Much of the work is this paper was inspired by 77,
which uses data from multiple sources and basic U-
Nets to predict land use in the Chesapeake Bay region.
The same authors have constructed a semi-supervised
system for learning land iteratively. 7?7 There has also
been work on using one set of labels to inprove the
prediction of another set of labels (i.e. using priors) in
image segmentation. ??7 In that paper, normally dis-
tributed priors are used, wheras here we use a multi-
nomial distribution.

3. The Data

The primary data consists of two sets of high resolu-
tion satelite images from the US Department of Agri-
culture’s National Aerial Imagery Program |refUSGA
covering the five state Chesapeake Bay watershead re-
gion. The two sets of data were collected in 2011/2012
and 2013/2014 and consist of both visual and near in-
frared images of the region. High resolution category
labels over six categories ?? (water, forest, field, bar-
ren, impervious, and road) are also provided; these are
the labels to be predicted from the image data. Suplli-
menting this are low resolution, but finer grained, land
category 77, which can be used as prior estimates, and
low resolution Landsat data ?7?, which was ultimately
unused in this project.

The high resolution data is at 1m spacial resolution;
the low resolution data is at 30m resolution, but has
been reprojected to 1m (via upsampling) for consis-
tency.

The full dataset is quite large; consisting of 125
tiles from each state (except Delaware which only has
107) each covering 45km?. For each of use small
256m x 256m patches have been created from all the
data sources. Five hundred patches have been sampled
from each tile, which makes the patches a very repre-
sentative subset of the orginal tiles. Tiles, and thus
patches, have already been assigned to training and
validation sets. It will become clear later that training
and validation distributions are as similar as can be



Table 1. Category Percentage by State

Water | Forest | Field | Barren | Impervious | Road
Delaware 2.1 38.7 51.6 0.5 4.8 24
Maryland 11 43.3 39.7 0.3 4 1.6
New York 3.7 59.5 34.6 0.1 1 1.2
Pennsylvania 0.9 66.8 27.3 0.5 3.2 1.2
Virginia 4.5 68.9 23.3 0.1 1.8 1.4

expected. There are 2500 validation patches for each
state and 5000 training patches for each state except
Delaware, which has 41000.

The distribution of surface categories, including the
presence of water and land use, is heterogenous among
the states. Road cover varies from 1.1% in New York
to 2.4% in Delaware while forest covers more than two
thirds of Virginia and Pennsylvania but less than half of
Delaware and Maryland. Maryland is over 10% water,
while Pennsylvania is less than 1%.

Land use changes over time, albeit slowly. The land
use labels apply to the 2013/2014 data, but it is as-
sumed that the same categories hold for the 2011,/2012
data. This allows for a certain amount of data augmen-
tation via use of two sets of images for each location.

There are 15 low resolution land use labels: open
water, four levels of developed land based, baren land,
three types of forest, shrubland, grassland, pasture,
cropland, and two types of wetland. Although much
finer grained than the high resolution categories each
pointof low resolution labeling corresponds to 900
points of high resolution labeling, and thus refelect an
average of all land use in that area.

4. The Model

The goal is to predict pixel level land use from image
data using as small a training set as practical. We
want a model trained on data from one state that can
predict land use in another state. Ideally, this should
only require visual data, but supplimentary data may
be required.

The model has to be a neural network. The standard
meta-architecture for this sort of problem is a U-Net,
7?7 an architecture that contains an encoder and a de-
coder component. The encoder consists of a series of
blocks of convolutional layers of decreasing width and
increasing depth while, in the original verison, the de-
coder was the same types of layers in reverse with skip
connections between blocks of layers of the same size.
The deeper and narrower layers can be seen as lear-
ing more complicated larger resolution features, while
the earlier, shallower layers learn smaller finer grained
features. In the decoder step, these low resolution and
high resolution features are combined to predict a final
ouput.

It was subsequently realized that the abosolute sym-
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metry between the encoder and decoder were unneces-
sary. It is now possible to use standard image classifica-
tion backend architectures as the encoders. The most
powerful encoder architetures availablle at this time
are the EfficientNet 7?7 family. Most experiments will
be performed with the smallest member of this family,
EfficientNetB0, with successful models extended to Ef-
ficientNetB1 and EfficientNetB2. The decoders will re-
main the same throughout. The final layer will produce
softmax predictions for each pixel. The learining rate
will start at 0.00256 and decay by a constant rate each
step so that it decays by a factor of 0.94 every epoch.
The adam optimizer is used. Models are trained for 50
epochs, but only models where valiation accuracy im-
proves are saved. The model with the best validation
score can then be recovered easily for running valida-
tion metrics.

Since the models are purely convolutional, they can
accept inputs of any size. Full 256 x 256 patches are
used for training, with no data augmentation beyond



100 150 200 20

Figure 3. Land Use Categories

100

100

150 200 20

Figure 4. Low Resolution labels

input
image |&|
tile

output
segmentation
3 map

=»conv 3x3, ReLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1

Figure 5. Original U-Net

centering and scaling the input.

Transfer learning is a deep learning strategy where
weights trained on one task are reused as the initial
weights for a second task. This works because the fea-
tures learned by the first task, especially those of early
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Table 2. Basic Models by State

DE | MD | NY | PA | VA | WV | Tot

Pretrained 94.5 | 84.7 | 90.6 | 88.6 | 74.2 | 58.2 | 81.8

Not Pretrained | 94.1 | 81.8 | 77.4 | 81.6 | 724 | 62.2 | 78.2
layers, are generally applicable to other tasks. The

standard set of pretrained weights comes from training
on ImageNet; it is not clear a-priori that these features
would be helpful in learning images. It will turn out to
be an important consideraton.

5. Experiments

The state with the smallest amount of data is
Delaware. In the interest of producing the mostsgen-
eral model, we train exclusively on the DelavvarOata
set. Validation is then done on the validation sets for
each of the states. The basic model would train on the
Delaware train data and validate on the Delaware val-
idation data. This could be done with or without Ima-
geNet weights. The initial results were quite good, with
94.5% validation accuracy with ImageNet weights and
94.1% accuracy with no pretrained weights. But the
model did not generalize well; with pretrained weights
the overall accuracy was only 81.8% pretrained and a
mere 78.2% with pretrained.

The first thing to notice is that the pretrained
weights improve accuracy significantly (except in West
Virginia) with the biggest jump in accuracy coming in
New York. Nonetheless, accuracy has dropped by sev-
eral percentage point everywhere and by double digits
in most states.

It turns out a simple change can improve the model’s
ability to generalize. Models overfit when they perform
better on the training set than on the validation set.
In this case, the training accuracy on Delaware was
96%, only slightly better than the validation accuracy.
But the training and validation sets had already been
chosen well enough that similar performance on both
sets was expected. In short, the model was overfitting
on the Delaware validation set. The solutigy was ob-
vious, use the validation data of all six states to get
the model to stop training before overfitting becomes
significant. With the new validation set putting the
breaks on overfitting, accuracy increases to 86.8% for
the pretrained network and 84.0% for the network with
randomly initialized weights. There is a modest drop in
accuracy for Delaware itself, but that is amply compen-
sated for in the improved performance of Virginia and
West Virginia. Maryland, Pennsylvania and New York
only improved modestly, suggesting that they were al-
ready close to as accurate as the model could make
them.

The second improvement in accuracy comes from



Table 3. Revised Validation Models by State

DE | MD | NY | PA | VA | WV | Tot

Pretrained 94.0 | 84.8 | 91.3 | 89.1 | 79.9 | 82.2 | 86.9

Not Pretrained | 93.1 | 85.8 | 84.7 | 89.7 | 76.3 | 74.4 | 84.0
Table 4. Two Year Models by State

DE | MD | NY | PA | VA | WV | Tot

Pretrained 93.7 | 87.8 | 91.9 | 90.6 | 83.2 | 78.0 | 87.5

Not Pretrained | 94.0 | 86.0 | 89.4 | 89.8 | 81.9 | 82.5 | 87.2

expanding the training data. Land use changes slowly
over time, but the appearance of land can change
rapidly, sometimes in a matter of days. Even after an
event a simple as a rainstorm any vegitation is likely
to be greener than it had before. In order to given the
model a better sense of what each class of land looks
like, we use both satelite passes as training data. There
are two possible ways to do this; either put both images
through the network at the same time (using an imput
tensor with six channels) or randomly select an image
from each dataset while training. The first strategy
is undesirable for two reasons; it can’t be used with
pretrained weight and it creates a model that would
always need two images for input. The second strategy
is the one we use. The end result almost closes the
gap between the pretrained and non-pretrained mod-
els, with 87.5% accuracy on the pretrained model and
87.2% accuray on the randomly initialized model. It
seems that the second set of data does not just pro-
duce a more robust model, but mimics the benefits of
pre-trained weights as well.

5.1. Priors

The coarse grained categories can serve as priors to
help improve accuracy. IIf I is the image, c is the fine
grained category being predicted and C is the coarse
grained category then it is a simple matter to com-
pute p(c|l). This is done by taking counts of each pair
of categories (c,1)) over all pixels on the training tiles
(not the patches) and dividing by the totals for each
category . We can even use the probabilities p(c|l) to
predict the fine-grained categories by the simple expe-
dient of taking arg max. p(c|l). Even though the coarse
grained categories are at a much-lower resolution, the
accuracy of this simple predictor980—85%7 depending
on the state. (West Virginia is missing because of a nu-
merical overflow error) In this case, though, accuracy is
deceptive; the naive Bayes classifier can only predicts
the first three categories (water, field, and forest), but
these categories dominate.

For better accuracy, the priors can be used a regu-
larization term in the model loss function.
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Table 5. Prior Models by State

DE | MD | NY | PA | VA | WV | Tot
Prior Alone 80.4 | 79.5 | 84.7 | 82.1 | 84.6
Prior and Model | 93.6 | 87.6 | 90.6 | 90.2 | 81.2 | 80.6 | 87.3

Table 6. Two Year Models With and Without NIR

DE | MD | NY | PA | VA | WV
Color Only | 94.0 | 86.0 | 89.4 | 89.8 | 81.9 | 82.5
With TIR | 94.1 | 88.8 | 90.9 | 90.2 | 66.6 | 63.5
pC,I,C pCI,CpCI
ol C) — PeLC) _ pCILAp(el)
P(I,C) p(CII)

We can thus replace our original loss function (cat-
egorical cross entropy) with categorical crossentropy
+ AKL(C||c) where KL is the Kulback-Leibler di-
vergence. We tried three values of A, 1, 107!, and
1072, Only the 2013/2014 data was used for training
in this case, and only the model with pretrained weights
The middle value performed best, with an accuracy of
87.3%, almost as good as the model using both sets of
images.

5.2. Adding Infrared

When adding a feature in linear regression, even it
proves to be simply noise, the new model always per-
forms better on the training set. For the same reason,
if we add a new channel of features to a neural network
model we should expect that model to perform better
on the training set. And just as in the case of linear
models, we should not expect that improved perfor-
mance to automatically carry over to validation. T
exactly what happens when we add the NIR channel to
the our model. There is a tiny increase in accuracy for
Delaware, modest but respectable increases for Mary-
land, New York, and Pennsylvania, but performance
collapses for Viriginia and West Virginia. This is likely
due to climate; heat patterns in Delaware are closer
to those in the northern Chesapeake bay states than
they are to those in the southern Chesapeake region.
The end result is that NIR confuses the model in those
states.

5.3. Expanding the Model Size

The results of this section should surprise no-one.
With successful models trained on EfficientNetBO0, it
was natural to see if larger versions of the same archi-
tectures work better. The EfficientNet family is con-
structed by increasing the number of layers and the
width (number of filters per layers) as well as the res-
olution of the input images in a systematic way. In
this case image resolution is fixed, but we would still
expect a strictly larger model to perform better. The



Table 7. Larger EfficientNet Models

DE | MD | NY | PA | VA | WV
BO - Two year | 93.7 | 87.8 | 91.9 | 90.6 | 83.2 | 78.0 | 87.5
B1 - Two Year | 94.1 | 87.7 | 89.0 | 90.9 | 84.0 | 84.7 | 88.4
B2 - Two Year | 94.1 | 88.1 | 89.3 | 91.3 | 87.0 | 87.8 | 89.6

Table 8. Prior Models by State and Size
DE | MD | NY | PA | VA | WV | Tot
Prior Alone | 80.4 | 79.5 | 84.7 | 82.1 | 84.6
BO with Prior | 93.7 | 87.8 | 91.9 | 90.6 | 83.2 | 78.0 | 87.5
B2 with Prior | 94.2 | 86.3 | 90.3 | 89.0 | 83.3 | 75.6 | 86.5
Table 9. Combined Models by State and Size

DE | MD | NY | PA | VA | WV | Tot
B0 with Prior 93.6 | 87.6 | 90.6 | 90.2 | 81.2 | 80.6 | 87.5
B0 Two year 93.7 | 87.8 | 91.9 | 90.6 | 83.2 | 78.0 | 87.5
B0 Prior and Two Year | 93.4 | 87.1 | 90.4 | 90.4 | 86.0 | 85.7 | 88.8
B1 Prior and Two Year | 94.1 | 83.0 | 89.4 | 90.5 | 86.2 | 89.7 | 89.7

best models have been the models using two years of
data and those using prior weights.

In the case of the two-year models, we see modest
to significant increases in most states with very modest
backsliding in Pennsylvania.

The same does not hold true for the models with the
coarse grain label priors. In this case there is a mod-
est decrease in accuracy. The decrease is small which
means It is possible that the regularization weight of
107! is not optimal. EfficientNet B1 was skipped for
time.

5.4. Combining Strategies

All the strategies so far proposed have been inde-
pendent of each other. It is natural to build a model
that combines them. The end result is interesting. Al-
though there is usually a slight decrease in accuray for
the high performing states (at this point anything that
doesn’t have Virginia it it’s name), the two low per-
forming states (Virginia and West Viriginia) now have
accuray in line with their northern counterparts. It
seems that the priors help most in cases where the im-
ages have less predictive power, but have a slight flat-
tening effect on predictions in cases where the the im-
ages alone perform well. EfficientNet B2 was skipped
for time.

5.5. Accuracy by Category

Up to this point, nothing has been said about the
accuracy by category of the models. For this, we only
consider three states and three models. Surprisingly,
the model with priors does not perform as well on all
classes as base model (although barren land, the least
common class is the only one to be seriously hurt),
and simply using two sets of input data does more to
improve accuracy for the less common classes. We also
see a key reason why Virginia has had low accuracy;
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Table 10. Class Level Accuracy

Water | Forest | Field | Barren | Impervious | Road

DE Base Model 88.7 94.4 96.6 49.1 77.8 82.1
DE Two Year 88.0 93.7 96.2 43.5 74.4 76.0
DE Two Year Prior | 86.7 95.5 96.1 16.9 71.6 73.8
NY Base 91.2 89.8 92.2 53.2 72.0 57.3

NY Two Year 96.2 90.5 93.8 53.6 72.4 56.7
NY Two Year Prior | 86.6 89.1 94.8 8.0 70.6 49.9
VA Base Model 9.4 73.5 90.4 19.2 56.3 32.1
VA Two Year 441 84.1 89.9 0.9 66.1 46.0
VA Two Year Prior 8.6 90.2 90.6 0.2 59.0 38.4

the model has been unable to recognize water features.

6. Conclusions and Future Work

At this point the best models perform just under
90% across all the state. We have shown that expand-
ing the validation set to include a representative sam-
ple of all the regions we want to predict for is a good
way to combat overfitting and improves overall accu-
racy even when the training data is not changed at all.
This does require going beyond the distribution of the
original training data, but it can be accomplished with
a small subset of the data we ultimately want to predict
on.

The models themselves make a difference. Earlier
work was done with primitive U-Nets and had less
than 80% accuracy without a number of augmenta-
tion strategies. Surprisingly, using pretrained weights
helped immensely; even though the data is not at
all similar to that found in ImageNet, the features
learned from transfer learning prove valuable in ana-
lyzing satelite data.

Adding a second set of satelite images gave the
model a more robust understanding of what each cate-
gory looked like, which improved accuracy. More valu-
able was the addition of the lower resolution categories;
especially in states (Virginia and West Virginia) where
a purely visual model underperformed.

Surprisingly, adding infrared data did not help the
model at all, underscoring the limits of using image
data to make predictions.

The obvious first step in any future work would be to
extend the model to larger EfficientNets. This should
be done in conjunction with replacing the patches cur-
rently being used with larger samples taken from the
original tiles. This would allow for the application of
some standard image detection preprocessing. Little
work was done to standardize the color distributions
across images; which would likely have improved accu-
racy as well. The low resolution Landsat data remains
as a possible extra data source, although it is looking
redundant at this point. It seems likely that the loss
function between the prior estimates and cross-entropy
is not yet optimal.
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Figure 6. Two New York Scenes with Two Year (middle)
and Two Year with Prior (bottom) Predictions. The middle
row does a better job predicting water, while the bottom
row is better at predicting forest.
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