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1 Introduction

All investing carries a certain degree of risk. While an investor might believe an asset’s value will
increase over time, when they purchase an asset it is almost impossible to know whether they will
gain or lose money on that investment. Being able to predict the future price movement of an asset is
consequentially an extremely powerful tool for any investor.

2021 has seen extremely volatile asset prices for both "meme stocks" and cryptocurrencies. These
price movements seem to be completely removed from the asset’s underlying value, and are instead
shaped largely by the sentiment of investors. Being able to measure the sentiment of the average
investor could, therefore, be useful in making projections about the future movements of asset prices.
Since the average sentiment of investors is almost impossible to measure, we decided to test whether
the average sentiment of tweets about a specific asset could be used as a substitute.

In order to narrow the scope of our paper and improve the usefulness of our model, we decided
to focus solely on Bitcoin and its price movements. Our model took tweets mentioning Bitcoin
and aggregated them into one-minute "buckets" to use as an input. We then used Naive Bayes and
Support Vector Machines (in two separate models) to output a prediction about whether the price
would increase or decrease over the following 24 hour period. We also compared these models to
a logistic regression model that used features generated by feeding our twitter data into a language
model called BERT (Bidirectional Encoder Representations from Transformers).

2 Related Work

Due to the significant financial upside of being able to predict the price movements of assets,
many researchers have attempted to use online sentiment to predict how the value of stocks and
cryptocurrencies will change.

A. Derakhshan and H. Beigy’s Sentiment Analysis on Stock Social Media for Stock Price Movement
Prediction focused on a relatively large number of stocks and used both English and Persian text from
message boards such as Yahoo Finance [1]. They used both SVM and Neural Network models and
attained an average accuracy of 56% in predicting positive or negative price movements, giving us a
useful benchmark to compare our results to. In addition to being primarily predicting stock prices
rather than cryptocurrencies, this paper also differed from our own by focusing on 18 US equities
compared to our single currency. Our decision to focus on a single asset was made in order to increase
size of the dataset on which we could train our model. Additionally, we chose to use Twitter due to
both ease of data collection and also due to it being a more current platform than the Yahoo Finance
dataset, which was collected during 2012 and 2013.

D. R. Pant, et al.’s Recurrent Neural Network Based Bitcoin Price Prediction by Twitter Sentiment
Analysis was much more similar to the analysis we carried out [2]. Like our own, their model used
Twitter data as an input and attempted to predict the future price of Bitcoin. However, while their
paper achieved a relatively high accuracy it was also reliant on manually labeling tweets. This led to a
relatively small dataset of 7454 Tweets, 1669 of which were deemed neutral or irrelevant. To increase
the size of our dataset and potentially increase the usefulness of our model, we decided to instead



use future price movements to automatically label our tweets and assigned an average sentiment to
groups of tweets rather than manually labelling each individual data point. Additionally, their model
also incorporated historical price movements in their predictions. We decided not to do the same in
order to test the predictive power of only using Twitter sentiment.

J. Devlin, et al.’s BERT: Pre-Training of Deep Bidirectional Transformers for Language Understand-
ing provided details on the usage of the BERT model utilized in our experiments [3]. BERT allowed
us to pre-train on our tweet texts using the entire context of the tweet rather than just its individual
words.

3 Dataset and Features

3.1 Tweets

We initially planned to use the Twitter API to download tweets mentioning Bitcoin over a two week
period to create a dataset. Unfortunately, the API placed a cap on the number of tweets we could
download, meaning we were initially limited to a few thousand tweets per day. To expand this into a
more generalizable dataset, we combined the tweets we had already downloaded with a larger dataset
from Kaggle [5]. All tweets in this combined dataset mentioned Bitcoin in either a hashtag or in the
main text of the tweet and were published between January and late May of 2021. This combined
dataset contained 272,304 tweets.

We then sorted these tweets into "buckets" based upon the time they were published, segmenting
the entire dataset into one-minute intervals. We were left with 34,294 buckets, each with a unique
starting time. To extract features from these buckets, we bundled all the tweets in each bucket together.
We then tokenized the aggregated text and removed all punctuation, emojis, urls, and stopwords.
Stopwords are words that are neutral and do not aid us in the classification task (such as 1, is, her, etc.)

Below is an example of the buckets of tweets before being processed to extract features:

Timestamp | Tweets

1612988520 | #BITCOIN IS A BUY!! HOLD #BTC AND YOU WILL BE ...
1612988460 WSBChairman Own half of one doing alt coin tr...
1612988400 #Bitcoin #BTC #XBT If $BTC price temporarily ...
1612988340 Huge Changes Begin Quietly! #digitalassetmanag...
1612988280 $aave #aave target for $1k is ahead move is...

To extract features from the preprocessed text, we used one-hot encoding. We also tried extracting
features using BERT, which will be further explained in the our methods section. We then divided the
final dataset of extracted features into training, validation, and testing sets. We randomly assigned
20% of our data to the testing set, 20% to validation set, and the remaining to the training set.

3.2 Price Data

We collected historical Bitcoin price data from Binance’s public dataset [6]. This data was provided
in monthly files and provided accuracy up to the closest minute.

While each entry in the dataset contained 12 data points, we only used "Open time" and "Close" in
our model. "Open time" was a UTC timestamp denoting the time at the beginning of each one-minute
interval. We could then use these timestamps to align our labels with their corresponding tweet
buckets. "Close" was the price of Bitcoin in US dollars at the end of that interval, which we could
then use to find the ensuing change in price.

To create a label for the set of tweets observed in minute 7", we first calculated
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Where %A Pricer is the percentage change in Bitcoin’s price from time 7" over the ensuing 24 hours.

We then used these changes in price to assign labels to each of the sets of tweets. We performed
experiments using two different label methods. The first assumed sets of tweets had either a "bullish"



(positive) sentiment or a "bearish" (negative). We set the label to 1 if the price increased in the day
following the tweets and -1 if the price decreased.

The second took into account situations where groups of tweets could be neutral by adding a third
label. If the percentage change in price was in the top 80% of positive changes in price, the label was
set to 1. Likewise if the percentage change in price was in the lowest 80% of negative changes in
price, the label was set to -1. All remaining labels were set to 0.

4 Methods

4.1 Naive Bayes

We used Naive Bayes as a baseline algorithm for sentiment classification.The Naive Bayes algorithm
assumes that the tokens in a tweet are conditionally independent of each other given the label of the
tweet. Following this assumption, and using a Laplace smoothing parameter of 1, the Bernoulli Naive
Bayes model yields:
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4.2 Support Vector Machines

Another model that has been extensively used for text classification is Support Vector Machine. SVM
is a classification model that finds a linear separation that optimizes the geometric margin between
different labels of the data. The problem SVM optimizes for can be formulated as:
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4.3 BERT
We also used BERT pretrained models for feature extraction. BERT is essen-

tially an NLP model that learns the contextual relationship between words [3].
Unlike other models, BERT is bidirectional,
meaning it considers not only sentences to the
left of a phrase but also to the right [3].

Each input sequence that is encoded with BERT
starts with a special classification (CLS) token. u m
This token is often used in classification prob-

lems as representative of the entire sequence.
We used the vector representation of this token

as the input to our training model. - EI E

BERT is a relatively new natural language pro-
cessing technique. Despite its effectiveness, it
has not been used much in sentiment analysis I

for financial assets and securities. We tried to Single Sentence
bring some novelty to this field by using BERT

as a feature extractor.

Figure 1: Graphical Representation of BERT [3]
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5 Experiments/Results/Discussion

5.1 Naive Bayes

After splitting data into train, val, and test sets,

we used the sklearn implementation of the Naive Bayes model for training. We tuned the hyper-
parameter alpha (Laplace smoothing parameter) for the model. Fig. 2 shows how the accuracy of our
model varies with changing alpha. This model had a training accuracy of 77% and a peak accuracy
of 58% on the test set when alpha = 0.01.
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5.2 Support Vector Machines

For this algorithm, we used sklearn implementation of linear support vector classifiers for training.
We tried fitting our data to support vector machines with radial and sigmoid kernels but they did not
seem to work any better than a random classifier. After tuning regularization parameter C, which
is proportional to how much the algorithm penalizes wrong classifications, we achieved a training
accuracy of 78% and a peak accuracy of 63% on the test set when C' = 0.01. Fig. 3 shows how
the accuracy of model on train and val sets versus different values of C. As expected the training
accuracy keeps going up with increasing C, since the optimizer penalizes wrong classifications more
strictly and over-fits to the training set more heavily.

We also used this algorithm on our dataset with 3 labels (bullish, neutral, bearish) which yielded an
accuracy of 53% on the test set and 71% on the training set with optimal C' = 0.01. The following
table shows the precision of this algorithm in each label.

| #Labels | Bullish [ Neutral | Bearish | | #Labels | Bullish | Neutral | Bearish |
2 61.8% - 63.2% 2 74.7% - 48.7%
3 52.8% 41.2% 55.7% 3 76.0% 9.2% 50.7%
Precision values for SVM Recall values for BERT

As we can see, the model underperforms when it comes to classifying neutral tweets. This might be
due to the fact that a bucket of tweets labeled neutral might have an equal number of both very bullish
and bearish tweets, and it might be harder for the algorithm to see how they balance each other out.

5.3 BERT + Logistic Regression

We used the vector representation of the CLS token as the feature for our model. We then fed these
features into a logistic regression model, returning an accuracy of 58% with 2 labels and 50% with 3
labels on our test set.

| #Labels | Bullish [ Neutral | Bearish | | #Labels | Bullish | Neutral | Bearish |
2 58.8% - 58.0% 2 71.5% - 43.9%
3 50.6% 27.2% 49.5% 3 72.4% 4.4% 46.3%
Precision values for BERT Recall values for BERT



5.4 Model Comparison

The result from our experiments show that in training using both 2 or 3 labels, SVM outperforms
our baseline algorithm, Naive Bayes. Surprisingly, SVM also outperforms BERT. A possible reason
behind this could be that a pretrained BERT model is not familiar with financial terms and online
slang used by cryptocurrency investors. Additionally, BERT can only accept up to 512 characters
while most of our tweet buckets were substantially larger than this limit. As a result, a large amount
of information might have been lost while converting these buckets into data that could be fed into
BERT.

The accuracy of the three models we tested, along with the number of labels used in each experiment,
has been condensed into a single table below.

Two Labels Three Labels

Model NB SVM | BERT NB SVM | BERT
Training || 77.0% | 78.1% | 58.4% || 68.1% | 71.7% | 52.3%
Testing 58.8% | 63.2% | 593% || 41.7% | 53.2% | 49.5%

Our two-label methods returned an average accuracy of approximately 60% on our test set. This
appears to be in line with previous attempts to make price predictions using sentiment analysis, with
other researchers tuning their models to a comparable 56% as mentioned in our related works section
[1]. Our models all significantly under-performed that of D. R. Pant et al, whose model attained an
accuracy of 77.62% [2]. However, this model also used historical price data and manually labeled
tweets in predicting future price movements meaning the results are not completely comparable.

6 Conclusion/Future Work

Given that markets are highly efficient systems, we believe our results are relatively significant. If the
bitcoin market was perfectly efficient it would be impossible to make predictions since all available
data would be immediately priced in. This means we would expect an accuracy of 50% - the same as
a random classifier. However, we see that SVM outperformed a random classifier by 13 percentage
points. This suggests that bitcoin markets are not entirely efficient and it is therefore possible to
predict future prices with a relatively high accuracy.

Nonetheless, we think that there is much room for improvement. One of the biggest flaws in our
training process is our labeling strategy. We think that the model can be significantly improved if
we come up with better strategies to label the tweets with their true sentiment rather than just the
market movements. Additionally, it might be worth testing whether grouping tweets by the minute is
the optimal time frame, or whether hourly or daily buckets work more effectively. Finally, feeding
BERT into more complicated models that can capture the nuances of our corpus such as deep neural
networks can be a promising direction to lead this project towards.

Ultimately, our project has demonstrated that it is possible to predict Bitcoin price movements with
relatively little data sourced solely from social media.



Contributions

In addition to performing a literature review and identifying the motivation of the project, Ben
contributed to the project by collecting Bitcoin price data from Binance and converting it into usable
labels. Additionally, he combined the Twitter API data pulled by Sara with the Kaggle dataset and
converted it into the bucket form needed to feed into our model.

Sara contributed to the project by accessing the Twitter API and pulling relevant tweets. She also
identified BERT as a viable option for the NLP portion of the project alongside other useful packages.
Finally, Sara also carried out most of the training and testing of our models.

In the final paper, Ben wrote sections 1-3 while Sara focused on sections 4-6. Both contributed to
editing and review of the document.
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