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A dataset of world development indicators is used to esti-
mate the medal counts of each country in the 2020 Summer
Olympic Games. Historic Olympic performance data was
merged with historic world economic indicators in order to
set the stage for a regression problem in which the efficacy of
multiple machine learning models is analyzed. In the course
of experimentation, it was found that a binary classification
algorithm can greatly aid in the formulation of the regression
problem. A number of classification and regression models
are experimented upon, and a final solution is given to pre-
dict the outcomes of the 2020 Summer Olympics.

1 Introduction

The Summer Olympic Games always offers an exciting
contest for which country can earn the most medals, and the
2020 Summer Olympics, planned to take place in 2021 due
to COVID-19, should prove no exception.

This paper concerns a high-level approach to make pre-
dictions about the 2020 games. That is, indicators such as
GDP, population, land area, etc. are used on a country-
level scale, as opposed to looking at individual athlete perfor-
mance. The problem is best modeled as a regression prob-
lem: given the chosen indicators, how many medals will a
nation win in the Olympic games this year? To accomplish
the task, a dataset is constructed for training and validation,
and a number of classification and regression models are it-
erated upon in the development of a two-phase algorithm de-
sign.

Seeing as the 2020 Olympic Games have yet to take
place, this paper will use the 2016 games as a dataset against
which to test the effectiveness of the algorithm, which can
then later be applied to predict the 2020 outcomes.

2 Related Work

Olympic medal forecasting is a common outlet for
statistical estimation techniques. Goldman Sachs in an
Olympics-related economics study found that the economic
and demographic features GDP and population tend to dom-

inate the prediction landscape, which has been corroborated
in other sources [1] [2] [3].

In [4], the authors find that a two-phased approach to the
Olympic estimation problem bodes well, and that a Random
Forest Regressor tends to provide the best results over boost-
ing methods and neural networks - this informed the model
selection in this paper’s Models and Model Selection section.
Interestingly, they also find that the COVID-19 crisis does
not have a significant impact on the 2020 medal predictions,
which gives reason for omitting COVID-related statistics in
this study. Other researchers have demonstrated success us-
ing a MLP neural network model in olympic medal predic-
tions, which informed the use of a MLP in this paper [5].

Many scholars, such as Scelles, Andreff et. al., agree
that classically speaking, the Tobit and Hurdle models offer
fair representations of the data, given that they naturally ex-
cel with distributions of data that have a large point mass at
zero [6]. Zhao, Qian, and Yang attempt to tackle the point-
mass problem directly by developing a model of the data
that inherently includes this point-mass at zero when build-
ing a gradient boosted Tweedie model to predict insurance
claims [7]. These efforts inspired the idea in this paper to
consider a two-phased approach of first classifying the data
to eliminate the training examples with zero medals won, and
then using regression algorithms to fit the remaining data.

3 Data Collection and Inspection

Two main datasets were used in this project. One was
a Kaggle dataset containing Olympic medal results on an in-
dividual athlete basis. This data can be found in [8]. To get
the socioeconomic indicators, a csv of World Development
Indicators was downloaded from worldbank.org in [9]. A
considerable amount of work was required to merge the two
datasets and resolve compatibility issues to create a coherent
dataset for learning.

3.1 Dataset Organization and Feature Selection
It was decided that the best way to organize the data
would be to have each country’s performance in a given sum-



Features Selected

Year GDP GDP Per Capita
GDP Growth % World GDP Total Pop.
9% World Pop. Pop. Growth Total Land Area
Medals Last Games Total Medals Total Athletes
% Athletes

Table 1. Features Selected

mer Olympics year be a training example. The output data
would be medals won. The country would be dropped from
the set of features, since it is desired to study the medaling
performances as a function of economic indicators indepen-
dent of country.

The features chosen are shown in Table 1, and the data
was split according to Table 2 for use in model iteration and
selection.

3.2 Dataset Nuances
Below is a list of peculiarities in the data that were re-
solved.

1. Only one medal was counted for each event, regardless
of team size.

2. Training examples with any null data have been removed
entirely. Figure 1 shows the sparsity in the data.

3. USA and a number of other countries boycotted the
Olympics in 1980 due to the Cold War. The Soviet
Union led a number of countries to boycott the follow-
ing games in 1984. For this reason, and because less
data was available from earlier in the 20th century, only
data from 1988 onwards was used.

4. Country naming discrepancies between the two data
sources had to be resolved.

5. Some features (e.g., the percentages) had to be engi-
neered.

3.3 Preliminary Data Analysis

To get a sense for which features have a positive correla-
tion on the number of Olympic medals won in a given year,
and also to get a sense for how these features are distributed,
scatter plots were created on all the features vs the number
of medals won.

Figure 2 shows an example of the plots that were made
from each feature. Observations from these plots will be
drawn upon later in the Experiments section.

4 Models and Model Selection
4.1 Objective

The average squared loss (Eq. 1) was taken as the
primary objective in this regression problem. Each model
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Fig. 1. Heatmap showing the null values over all training examples

for given features. Examples with any null space have been removed.
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Fig. 2. Scatter plot of population growth (percentage) vs total
medals won for all training examples

Purpose Years Used

Model Tuning 1988-2008
Model Validation and Selection 2012
Algorithm Test 2016

Table 2. Train, Valid, Test Split

would aim to minimize the squared loss between the pre-
dicted and actual medal counts. Another objective was also-
considered: the average squared loss of the top 10 scoring
countries in a given olympic games (Eq. 2). The thinking
behind this loss function is that the top scoring countries’
counts matter more if this algorithm is to predict the win-
ning country correctly. Due to an already small dataset, and
the qualitative decision that estimating every country’s medal
count is more important than just predicting the winner, the
first loss function was implemented as the objective when
training each model. The squared loss of the top scoring
countries is considered a “nice-to-have” and though not im-
plemented as an objective function, was still included as a
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4.2 Regression Models

Below is a list of all models considered in this project.
All models’ objective functions were the average squared
loss (Eq. 1).

1. Linear Regression
Linear regression served as the baseline model, and was
also used as an intermediary model to explore kernel
functions and locally weighted linear models, so as to
introduce a method to minimize the second loss func-
tion in Eq. 2.

2. Regularized Linear Regression
To minimize any overfitting brought on by linear regres-
sion, both Ridge and Lasso regression were used to ob-
tain fits of the data. By minimizing the L2-norm and L1-
norm of the fitted coefficients, these algorithms would
reduce the size of the linear coefficients and thereby
avoid overfitting.

3. Poisson Regression
The Poisson distribution was included because it is a
classic model for discrete counts. However, the particu-
larity that the Poisson expected value equals its variance
causes issues in a problem where there is a large number
of points clustered at zero [6]. This distribution was in-
cluded anyway out of desire to understand its struggles
in this context.

4. Support Vector Regression
Support Vector Machines were also used in regression
analysis because of their inherent ability to reduce over-
fitting by including a weight minimizer in their objective
function. Kernels were heavily explored using SVRs to
examine the data in different dimensions, to try to find
hyperplanes separating the data and leverage the nonlin-
earities of the features.

5. Random Forest Regressor
To include a less classical (and less linear”) algorithm,
but also reduce the overfitting that decision trees intro-
duce, a random forest regressor was used.

4.3 Classification Models

As mentioned earlier, one of the peculiarities of this
dataset is that many countries do not win any medals in the
Olympic games. Therefore, this takes the form of a point
mass at zero when trying to fit regressors to the data. In clas-
sical statistics, this may be modeled as a mixture distribu-
tion like Eq. 3, using the Poisson distribution as an example.

Linear Model Predictions
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Fig. 3. Baseline results for estimated medals won (y-axis) vs actual
medals won (x-axis) in 2016 Summer Olympic Games.

Using this equation, a maximum likelihood estimate can be
derived for the parameter .

X i) ~ Y30 + (1 —y)Poisson(A) 3

By training a binary classification algorithm to deter-
mine whether (0) no medals were won, or (1) at least one
medal was won, the same objective can be accomplished.
The result is a two-stage machine learning algorithm - first
a binary classifier is trained on the data, and the regression
algorithm is trained on the examples which are predicted (1)
by the classifier. The below binary classifiers were examined
for this application.

1. Logistic Regression
This model would serve as the baseline for all classifica-
tion models by trying to create a linear decision bound-
ary between the training examples.

2. Support Vector Classification
Support vectors would allow the application of the
kernel techniques from the regression section of this
project, and also introduce natural regularization.

3. Gaussian Naive Bayes
The naive assumption that all examples are independent
may not hold, especially because the medals won by a
country in one year directly affects the medals won by
another country in that same year. However, between
Olympic games, this assumption may be more valid.

4. Multilayer Perceptron
This algorithm attempts to leverage the nonlinearities in
the data, especially when experimenting with the num-
ber of hidden layers a different types of activation func-
tions.

5. Random Forest Classifier
To again introduce a decision tree algorithm into the
methods, and study nonlinearities in the data, a random
forest classifier was used.



5 Experiments
5.1 Feature, Variable Normalization

One of the key issues with this dataset is that a differ-
ent number of medals are awarded each Olympic games,
due to the addition of sports over time. This creates un-
certainty in the predictions of the medal counts for a given
Olympic games since the training examples include medal
counts from a variety of different games. Two things were
explored to mitigate this effect.

1. Instead of total medals won as the dependent variable, a
variable “Percentage of Total Medals Won” was created.
The regression algorithms would be trained to estimate
this fraction, and then the estimate would be multiplied
by the number of total medals awarded that year to ob-
tain estimates of each country’s final score.

2. Two additional features were added: year of Olympic
games and total medals awarded that year. The depen-
dent variable was kept at total medals won by a specific
country in a specific year. This way, the correlation be-
tween year and total medals would be implicitly given
to the algorithm, which could learn the correlation on its
own. This method was chosen as the winner due to its
cleaner implementation, and slightly better results.

5.2 Kernels and Feature Maps

From exploratory data analysis earlier in the phase of
the project, it could be seen that the relationship between the
total medals won and certain features was not always linear.
First, some manual feature mappings, in the form of simple
functions, were experimented with using the baseline linear
regression model. For example, the 10gn,theieres Was tried
instead of nyp eres, due to the relationship seen in the ex-
ploratory data analysis plots. However, due to the wide dis-
tribution of behavior across the feature space, none of these
maps provided much benefit.

Different off-the-shelf kernels were also used to explore
nonlinearities in the data. The main kernels examined were
linear, polynomial (degrees of 2 and 3), radial basis function
(RBF), and sigmoid kernels. The polynomial kernels were
motivated by desires to fit the correlations of certain features
that were known to be positive, but not exactly linear. The
RBF kernels were inspired by Gaussian-looking behavior ex-
hibited in the features such as "GDP Growth” and “Popula-
tion Growth” where a positive correlation was not always
found (see Fig. 2).

Interestingly, the kernels that performed the best were
simple linear kernels. This is due to the fact that in gen-
eral, the higher the feature values, the more medals won by a
particular country (e.g. higher population, higher GDP, big-
ger land area had an overwhelmingly positive, and linear-
looking, correlation with total medals won).

5.3 Hyperparameter Tuning

In order to tune the chosen regression and classifica-
tion models, cross-validation techniques were used on the
”Model Tuning” data in Table 2. K-fold cross validation was

10 Regression Algorithm Performance

I Before Tuning
8 After Tuning

Average Std Dev [Medals]
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Fig. 4. Performance of all regression models before and after tun-
ing. Dependent variable is the loss in Eg. 1 using the validation set
(2012).

used for most algorithms, sometimes with K = 3, and other
times with K = 5. With K-fold cross-validation, K randomly
selected divisions of the training data would be created. By
shuffling the data in this way and providing multiple test sets
within the training space, it is less likely that the models will
overfit the training data.

For the more classical algorithms, an exhaustive grid
search cross validation technique was used, which tested all
combinations of parameters in order to come up with the
optimal fit of the 1988-2008 data. The advantage of using
the 2012 data to validate these models was to prove that the
cross-validated models were not overfitting the 1988-2008
data.

For the more computationally intensive algorithms, such
as the Multilayer Perceptron and Random Forest algorithms,
a randomized search cross-validation technique was used.
In this technique, not every pairing of parameters was at-
tempted on the tuning data, but parameter distributions were
provided, and a subset of the random combinations of these
parameters were evaluated on the K folds. The distributions
of parameters used in the grid search and randomized search
tuning can be seen in the code.

Figure 4 shows the performance of the regression mod-
els before and after cross-validation hyperparameter tuning.
For both of these experiments, the baseline Logistic Regres-
sion classifier was used, so the regressors only fit the data
that the classifier predicted as y = 1 (at least one medal won).
Interestingly, the performance of some models were worse
after parameter tuning (see Lasso performance), because the
models overfit the tuning set and offered a worse fit than the
default values on the validation set. Similar figures were de-
veloped for evaluating the classification algorithms, but those
have not been included.

54 Weighted Regression

Locally weighted regression was explored in the linear
regression models (linear, ridge, lasso). This was an attempt
to reduce the loss in Eq. 2 without drastically impacting the



Classifier Accuracy | Regressor Avg Std Dev Final Alg Predictions
Logistic Reg. 0.877 Weighted LR 2.63 100 1
SVM CIf 0.884 SVM Reg 2.50 80
Random Forest | 0.877 Random Forest | 2.20 60
Gaussian NB 0.891 Poisson 3.75 401
MLP 0.855 Lasso 2.87 20
Ridge 2.27 -

Table 3. Results of Models on Validation Set

foremost objective in Eq. 1.

3 — (v —)2
w = exp (M) )

212

Equation 4 shows the weighting scheme used, where y
and T were parametrically varied. y can be thought of as
the number of medals won where we want to give the most
weight to the input feature, and 7 is a standard-deviation-like
division factor. Values of 50 and 1, respectively, were found
to be optimal for y and 7.

6 Results

Table 3 shows the results of the tuned classifier models
on the 2012 validation set. Accuracy, or the proportion of
examples estimated correctly over all examples, is the pri-
mary metric used, as it was the objective function driving
each of these classifiers in training. Given the best perform-
ing classifier, the Gaussian Naive Bayes model, the classifier
predictions were fed into the regression algorithms, which
performed according to Table 3. It was decided to choose
the final regressor to minimize a linear combination of Eq. 1
and 0.25 * Eq. 2, so as to not use a model that will wildly
favor fitting the lower scoring countries. Thus, the optimal
algorithm in this problem is a two stage algorithm consist-
ing of a Gaussian Naive Bayes classifier, and tuned Ridge
Regression model. To predict the 2016 outcomes, the algo-
rithm was trained on the tuning and validation data - results
of the predictions can be seen in Fig. 5. This final prediction
had an average standard deviation of 2.26. For reference, the
baseline linear regression model (with no classification step)
had an average standard deviation of 3.25.

7 Conclusions and Future Work

Through this work, a two-step machine learning ap-
proach to predicting the 2020 Olympic Games medal counts
has been proposed. The first step applies binary classification
algorithms to determine which countries even medal. Given
these results, several regression algorithms are investigated
to form a fit to the resultant data. The application of this two-
phased approach helped mitigate the issue of a large presence
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Fig. 5. Final algorithm performance on test set (2016). Y-axis is pre-
dicted medals won, whereas the x-axis is actual medals won. Com-
pare with baseline model in Fig. 3.

Country  Actual Medals Predicted Medals
USA 103 103
China 89 &5
UK 65 52
Germany 44 44
Japan 38 45

Table 4. Final algorithm predictions for 2016 Olympic medal counts
for top five scoring countries

of the dependent variable (medals won) at 0, and was found
to greatly improve performance.

The most obvious next step is to actually make predic-
tions for the 2020 games - this was not done in this paper be-
cause there would be no way to grade the predictions since
the games have yet to happen, and the dataset used in this
project did not have 2020 economic data.

To improve performance, a few adjustments can be
made to the data and features. A lot of the important world
development indicator information does not exist for the
smaller nations. The solution for this project was to remove
all training examples with null data entries - however, this
resulted in a relatively small training set. Application of the
imputation technique may help improve performance [10]. A
last data-related improvement would be including data from
in-between the games in the predictions, and not only the
years that the Olympics takes place.

In terms of algorithm development, it would be better
to pare down the number of considered models so that more
work can go into optimizing and tuning this models. Also, a
new objective for training that can incorporate loss functions
1 and 2 simultaneously would be beneficial, so that the sec-
ond objective is actually optimized by the algorithm itself.



8 Code
The cross-validation and most of the mod-
els were implemented using the Scikit-Learn li-
brary [11]. All code for this project can be found at
https://github.com/bdobkowski/2020_0lympics_Predictions.
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