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1 Introduction

Since the first PvP (player vs. player) video games began
allowing live communications during matches, toxic players
have utilized in-game chats as platforms for unfiltered cyber-
bullying with little meaningful consequences. Existing filters
used in games today only identify specific profanity at best,
and players rarely suffer reprisal for racist, sexist, homopho-
bic, or other insulting and derogatory remarks during live
gameplay. Simultaneously, a unique lexicon of ”gamer slang”
(Fig. 1) has arisen, both in general and for specific games.
Gamer slang is relatively unknown and unused in regular con-
versation, and as a result, sentiment analysis algorithms (the
identification of emotional connotations from text) adapted
to normal English conversations are unable to comprehend
and recognize toxic messages in games. Our project aims to
extend existing sentiment analysis models to the ”language of
gaming” through a supervised learning setting. The inputs to
our algorithms are in-game chat messages in vectorized forms.
We then compare the performance of several classifiers such
as Support Vector Machines, Naive Bayes, K-Nearest Neigh-
bors, Random Forests, and neural networks to output one
of three sentiments — neutral/positive (class 0), negative at-
titude (class 1), or derogatory (class 2) — for each message.
This text classification is foundational to any effort to regu-
late live toxic language.

report for unskilled player is useless negative attitude
ggwp neutral/positive
such a feeder...xD negative attitude
shutup f g derogatory
totally noob team negative attitude
go play barbie like a girl derogatory

Figure 1: Examples of subtle aggression in game chats.
("ggwp” = good game, well played. ”feeder” = an insult

towards a player who gets killed frequently by enemies.)

2 Related work

Past studies have recognized the existence of a ”gaming lan-
guage” and its relevance to addressing cyberbullying in gam-

ing, but the specific applications of sentiment analysis and
machine learning remains open for exploration. The lexicon-
based sentiment extractor built by Blair et al. for StarCraft
2 incorporated game slang [1], but relied on an inflexible dic-
tionary of expected words without consideration of context or
frequency. Another study by Buchanan et al. utilized auto-
matic classification through SQL database queries, and while
this setup could identify profanity and some aspects of racist
sentiments, it identified fewer than 45% of manually-labeled
toxic messages [2].

As a result, to identify toxic and derogatory language in
an online game setting, we aim to apply tools from sentiment
analysis and NLP that have been used frequently in the do-
main of social media [3]. For instance, Arabnia et al. utilized
Naive Bayes and Random Forest classifiers (techniques we im-
plement in this study) on annotated Twitter data, correctly
detecting 85% of cyberbullying in social media comments [4].
Neural networks are also a powerful tool for text classification
and especially relevant to our desired multiclass model, where
negative and positive attitudes must be clearly distinguished
from explicit, derogatory text. In particular, applications
such as text vectorization and feedforward neural networks
in classifying Reuters newswires [5] serve as inspiration for
our neural network implementations, where we also use simi-
lar embeddings that only retain words most often associated
with each class.

Even where moderation filters are actively in place, such as
the first-person shooter Overwatch [6], game-specific insults
and microaggressions continue to pervade the game, creating
a persistently toxic environment. In our work, we aim to ex-
tend Blair et al.’s and Buchanan et al.’s work to include ML
and neural networks, and ultimately be able to detect sub-
tleties that cannot be captured by current game chat filters.

3 Dataset and Features

We compiled 33,000 chat messages from DOTA 2 and League
of Legends [7,8], with manual labels of the three classes. We
balanced the dataset to reflect the general distribution of
messages during gameplay, where neutral /positive messages
hold a slight majority, and derogatory messages appear not
as frequently (Fig. 2). We randomly divided the dataset into
training and test sets with a 80/20 split, and then we split
the training set into 80% training and 20% validation data,
using scikit-learn’s train_test_split function [9].
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Figure 2: Balance of classes from the dataset.

3.1 TF-IDF Encodings

For our ML classifiers, we vectorized each message using the
TF-IDF (Term Frequency Inverse Document Frequency) Vec-
torizer, which measures words’ originality by comparing the
number of times a word appears in a message with the num-
ber of messages the word appears in [10]. Each column of
the matrix is an index in the vocabulary of the dataset. The
TF-IDF values for each term ¢ are calculated as follows:

tF-idf(t) = t£(t, d) x idf(t)

tf(¢,d) = number of times word ¢ appears in msg. d

1
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The primary benefit of using TF-IDF, instead of assign-
ing binary appearance values to each word in the vocabu-
lary (which considers only individual messages), is that TF-
IDF takes into account the frequency of words in the en-
tire dataset, and does not rely on pre-trained vectors. This
is particularly significant for our data because of the many
acronyms and slang terms used throughout.

3.2 Word2vec and GloVe Embeddings

For the neural networks, we incorporated word2vec and
GloVe in our Embedding layer, instead of using relatively
high-dimensional vectors of TF-IDF (~ 2700 dimensions).
Word2vec (from Python’s Gensim library) and GloVe group
similar words together in a vector space and makes highly ac-
curate predictions about a word’s meaning from past appear-
ances. While Word2vec relies on semantic meaning through
local context, GloVe uses global context, making it poten-
tially more effective with its comprehensive coverage of an
entire corpus and dataset. For GloVe embeddings, we used
vectors of 100- or 50-dimensions for each message, where the
vectors are pre-trained from Gigaword 5: a newswire text
archive [11]. For word2vec, we use 100- or 50-dimensional
pre-trained vectors from a Google news dataset [12]. Com-
pared to TF-IDF, we anticipated that the pre-trainings used
in word2vec and GloVe would result in lower accuracies due
to the ”"gamer language” rarely being used in news articles.

4 Methods

4.1 Baseline: Binary SVM

For our first baseline, we combined both negative attitude
(class 1) and derogatory language (class 2) into one class
for a binary classifier (using TF-IDF encodings), to deter-
mine whether there exists a clear separation between neu-
tral/positive (label y = 1) and negative attitude/derogatory
(label y = —1) examples. We chose SVM because of its com-
patibility with separable data and primary goal of separating
examples with a clear hyperplane by maximizing geometric
margin. The optimization problem for SVM is as follows [13]:

max vy
v,w,b

st. yDwTz® +b0) >~,i=1,...,n

with the constraint that ||w|| = 1. Here, 7 represents the ge-
ometric margin (distance to a decision boundary), and (w, b)
are the weights and bias term that the model learns.

4.2 Naive Bayes

We implemented two iterations of multinomial Naive Bayes:
the first of which (our baseline) utilizes a manually con-
structed dictionary of the 165 most frequently encountered
toxic phrases in gaming. We chose Naive Bayes because
of its conditional independence assumption; namely, that
presence(s) of a certain phrase in a message has no effect on
how many times a different phrase in the same message is
present [14]. We constructed input matrices that had sparse
vectors with each column (¢ = 1,...,165) containing the
frequencies of phrase w; in message i. Our goal with the
predetermined vocabulary was to force messages without
any phrases in the vocabulary (i.e. class 0 messages) to have
an almost-zero probability of belonging to class 1 or class
2. The 3d — 1 parameters of the model are as follows (with
Laplace smoothing):

1+ ?: ]1{y(i) — k}x(i)
Pl | O=Fk)= |ZV1 - S
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where |V is the dictionary size and each x is a frequency vec-
tor corresponding to the dictionary. For our second iteration
of NB, we used TF-IDF encodings instead of a predetermined
dictionary.

4.3 K-Nearest Neighbors

Similar to our second iteration of NB, we used TF-IDF en-
codings to create the input matrices for KNN. With each
message, the Euclidean distance (similarity) of its feature vec-
tor to other feature vectors in the training matrix would be
found. Then, we build an ordered collection of distances and
indices of the data. A parameter K determines how many of
the training messages that are ”closest” to the test message
are considered. For example, if K = 2, the two closest mes-



sages would be considered. The most frequently occurring
label (the mode) of the K closest messages to a given test
message is then the predicted class label [15].

4.4 Random Forests

Branching off into alternative methods of classifying language
in the PvP game lexicon, we utilized random forests, which
constructs multiple randomized decision trees and averages
their results to avoid the overfitting that can come from the
use of a single decision tree.

We tested this with two common loss functions to deter-
mine where to split the data. First is minimizing the entropy
loss, given by:

Lcross (R) = = ZPAC 10g2 pAC

where ¢ is the number of classes and each p is the preva-
lence of a given class [16]. We then build random forests by
minimizing the Gini impurity, given by:

Ic(p) = Zﬁi(l — D).

4.5 Feedforward Neural Network

In addition to ML classifiers, we used neural networks to
determine whether intermediate learning steps and feedback
loops would lead to higher accuracies. We first employed sev-
eral implementations of feedforward neural networks with a
small number of hidden layers. Several ”intermediate labels”
were the outputs for each layer, and eventually the final pre-
dictions were made based the previous intermediate outputs
being fed into the final layer. We experimented with differ-
ent input sizes, embeddings, and various activation functions
such as ReLU, softmax, and sigmoid. Fig. 3 is an example
architecture we used, inspired by the Reuters newswires clas-
sification [5]. We trained the model for 550 epochs, which we
found was sufficient to reach convergence.

ReLU layer

ReLU activation:
atl = max(u,v[l]T;r + b, 0)

[sofima

ReLU activation:
a? = max(w@TalVl + blz].O)

softmax layer

softmax activation:
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Figure 3: Example feedforward NN architecture, with w and
b representing the learned weights and bias terms.

4.6 Long short-term memory (LSTM)

In contrast to feedforward NNs, we applied LSTM: a specified
recurrent NN frequently used for sentiment analysis. LSTM
units have feedback loops and memory cells that can hold
past information and learn from context; for example, cell
states can decide what words are important in deriving the
sentiment of a certain phrase, and these words are stored
in the memory cell of the next LSTM unit. We trained the
model for 300 epochs, which was more than sufficient to reach
convergence. The following shows one LSTM unit’s compu-
tations in our context (see Appendix for functions used) [5]:
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2. Tanh layer: update cell state using the tanh function,
with vectorized words chosen to be kept from the sigmoid
layer.

Figure 4: LSTM unit [17]
with labeled steps 1, 2,
and 3.

v

1.  Sigmoid layer: de-
cide what words to store
in the cell state, based

on output from the last ﬁ
LSTM wunit h;_; and
input 4.

3. Output h;: compute sigmoid to decide which words in the
cell state to output, and put the cell state through tanh to
generate all vectorized words to input to the next LSTM unit.

We use the categorical cross-entropy loss function for multi-
class classification in the feedforward NN and LSTM, which
the models minimize [18]:

c-1
CE=-> tylog(f(s)x)
k=0

where f(s) is the softmax activation:
e’k

C' is the number of classes, t is the target one-hot vector, and
s refers to the output scores (probabilities) after 1 epoch.

f(8)k =

5 Results and Discussion

5.1 Baselines: Binary SVM & NB

Model ‘ Accuracy
SVM (linear kernel) 0.9565
SVM (rbf kernel) 0.9635
SVM (polynomial kernel) 0.9435
Naive Bayes 0.8500

Table 2: Accuracy scores on SVM & Naive Bayes classifiers.



true label

0 1 2
0| 09992 | 0.0008 | 0.0000
s Class 0 | Class 1 | Class 2
£ 1| 03021 | 06392 | 0.0587 090 | 077 | 061
el
£ 2| 02581 | 0.0860 | 0.6559
Figure 5: Confusion matrix and F1 scores for Naive Bayes
baseline.

The SVM accuracies indicate that messages can be separated
into positive/neutral and negative examples, with the lin-
ear and RBF kernels performing particularly well. These
results demonstrate substantial distances between vectors
across classes, thus identifying a clear decision boundary. In
comparison, the polynomial kernel was slightly weaker, most
likely due to overfitting.

On the other hand, our Naive Bayes baseline, which uti-
lized a predetermined vocabulary of the most frequently
used toxic phrases, was able to correctly identify most pos-
itive/neutral examples but performed poorly in distinguish-
ing negative and derogatory examples from positive exam-
ples (Fig. 5). Words such as ”f**k” and ”"bad” were
used across negative, derogatory, and positive/neutral ex-
amples (e.g. ”my bad” vs. "youre bad”, or ”f**k you”
vs. "f**k yeah”). Without considering context, many neg-
ative and derogatory examples were incorrectly labeled as
neutral /positive, as shown by the F1 scores. This exposes
a potential issue with the conditional independence assump-
tion; phrases may not be entirely independent of one another
in a message, and it is insufficient to condition only on the
class label without considering context within messages. We
also attributed the flaws to our manually constructed dictio-
nary, which could not generalize well to new data that contain
toxic language that is not present in the dictionary.

5.2 ML Classifiers

Model Accuracy
Naive Bayes 0.9506
K-Nearest Neighbors (K = 1) 0.9853
K-Nearest Neighbors (K = 2) 0.9711
K-Nearest Neighbors (K = 3) 0.9683
K-Nearest Neighbors (K = 6) 0.8424
Random Forest (entropy, max depth = 32) 0.8775
Random Forest (Gini) 0.9912
Random Forest (Entropy) 0.9910

Table 3: ML classifier accuracies, with TF-IDF encodings.

Model Class 0 | Class 1 | Class 2

Naive Bayes 0.97 0.94 0.87

KNN (K =1) 0.99 0.98 0.95
KNN (K =2) 0.98 0.96 0.91
KNN (K = 3) 0.98 0.96 0.91
KNN (K = 6) 0.89 0.77 0.67

RF (Entropy, depth=32) 0.91 0.86 0.53
RF (Entropy) 0.99 0.99 0.98

RF (Gini) 0.99 0.99 0.98

Table 4: F1 scores for ML classifiers.

Our second iteration of NB with TF-IDF encodings demon-
strated better performance in identifying negative (class 1)
and derogatory (class 2) messages compared to the baseline,
indicating that the baseline fell short due to the predeter-
mined dictionary rather than the conditional independence
assumption. Here, our model was able to capture a more com-
prehensive scope of words used throughout both the training
and test sets. As confirmation, the most indicative words in
each class were: "gg” (0), "thanks” (0), "noob” (1), "wtf’
(1), "useless” (1), "r*tarded” (2), and ”f*gg*t” (2).

KNN with TF-IDF also demonstrated this better perfor-
mance. We tested multiple K values and saw that smaller
K performed well, with K = 1 being ideal; instead of having
large groups of similar messages, the training data had 1-2
very similar messages to a given test message, which meant
that when the classifier attempted to classify a message by
referring to several (> 3) nearest neighbors, those neighbors
had different labels (likely due to the impactful difference of
1-2 words). As shown by the F1 scores, the classifier had
high accuracy in correctly identifying messages from class 1
and class 2 for K = 1,2, and 3, compared to Naive Bayes.

Random forests, without an arbitrarily enforced maximum
depth, were able to precisely classify the test data, and per-
formance using Gini impurity as the loss function were com-
parably good to those using entropy. However, an arbi-
trarily set depth performed significantly worse, particularly
when classifying explicitly derogatory language as opposed to
neutral /positive or negative attitude language: this is owed
largely to a tendency to misclassify as neutral/positive that
is mitigated with higher depths. This overfitting does not
seem to be mitigated by averaging over many estimator de-
cision trees. The F1 scores for entropy and Gini once again
show the model’s ability to correctly distinguish messages,
even with very subtle differences between class 1 and 2.

5.3 Neural Networks

Model Activation Input Score
T
| T
— Sslflttlsjtx \Ygf)ﬁi\ﬁc 0.8803
LSTM 251‘;?1? V?Sﬁlec 09068
LSTM ssiirgljzc 15‘5?:1?; 0.9175
- Reiﬂt, j:jU, 5((;)121\1/; 0.9486
N
| R | Ve
LSTM S;fli?j: 5%121\1/; 09586

Table 5: NNs accuracies, with various activation functions
and input sizes. (FF = feedforward NN)
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Figure 6: Loss and accuracy curves neural network models.

5.3.1 Comparison of Setups

Among the highest-performing models that we tested (Table
4), we found that lower-dimensional vectors consistently per-
formed best, with high F1 scores (0.96 & 0.89 & 0.95). Both
high- and low-dimensional vectors had high training accu-
racies throughout (94-97%), but higher-dimensional vectors
had lower test set accuracy, demonstrating slight overfitting.
Consistent with standard multiclass classifiers, we also found
that the softmax activation function (and the ReLU function
for the feedforward NN) was most suitable for ensuring that
messages would have only one associated label [19].

Between word2vec and GloVe, we found that both per-
formed well for both the feedforward and LSTM models, with
the key difference that GloVe embeddings achieved 90% val-
idation accuracy significantly sooner than word2vec embed-
dings. For LSTM, GloVe achieved 95% accuracy within 80-90
epochs while word2vec achieved 95% within 235 epochs. We
attributed this to the GloVe embeddings being dependent on
global context, with similar vector representations for certain
words across the whole dataset leading to ease of classifica-
tion with the same label, while word2vec’s reliance on local
context can result in subtle differences in word representa-
tions that may be classified differently across the data.

Comparing the feedforward NN and LSTM models, the
best LSTM model converged on a 90% validation accuracy
under 50 epochs (250 less epochs than feedforward). We
attribute this to the recurrent NN structure of LSTM; the
model is able to constantly learn from past phrases associated
with certain classes, and hold familiar word representations
in its memory cells. As a result, such references to words as-
sociated with derogatory messages, for example, were learned
early on. In contrast, the feedforward model does not have
available memory cells; its only reference is the previous iter-
ation’s learned weights, rather than specific words that often
associate with an output class.

5.3.2 Discussion of DL vs. ML

Overall, the feedforward and LSTM models were slightly
weaker than our ML classifiers (5.2). We attributed this to
the vector representations of the input data; the pre-trained

word2vec and GloVe embeddings for our NN classifiers rely
on regular English words, while our ML classifiers utilized
word frequencies from the slang-populated data itself, with-
out pre-trained embeddings. In the context of gaming, this
focus on word frequencies in the data resulted in more ac-
curate classifications. Pre-trained embeddings may not view
words like ”bronze” and ”feeder” as insults in gaming, or ob-
serve that ”gg” (good game) frequents positive/neutral ex-
amples. This supports our finding that encodings such as
TF-IDF (which were used in our ML classifiers and compute
frequencies based on the dataset alone) would be more effec-
tive in identifying what words in games are more indicative
of insults or positivity.

6 Conclusions and Future Work

Our work indicates that ML classifiers (particularly KNN and
Random Forest) are able to adapt to ”gamer slang” and ac-
curately classify sentiment for League of Legends and DOTA
2 chats, with their own unique lexicons reflecting the compet-
itive PvP genre. We achieved high (85-99%) overall accura-
cies, though F1 scores indicated that models tend to perform
slightly better with classifying positive/neutral and negative
attitude messages than derogatory language. We also ob-
served higher accuracies with word frequency-based encod-
ings rather than manually-constructed vocabularies or pre-
trained embeddings, which is a potentially promising area of
study as gaming lexicons continue to evolve with zeitgeist
shifts. There is no guarantee that the games we study here
will be applicable in the future, but the method of utilizing
word frequencies for encoding can continue to be applied as
new data emerges. Moreover, models such as convolutional
neural networks, boosted decision trees, other deep learn-
ing architectures, and applications of voice chats and newer
games could improve the detection of toxicity. Nevertheless,
we hope that our analysis of ML algorithms applied to toxic-
ity in PvP games can contribute to fostering more cooperative
and less hostile environments in what ought to be a source of
relief and entertainment rather than stress and harm.

7 Appendix

7.1 LSTM unit layers

1. Sigmoid layer: f; = o(Wy - [hs—1, 4] + by), where hy_1 is
the output of the last LSTM unit, x; is the current input,
and W and b refer to the learned weights and bias term.

2. Tanh layer: updating the new cell state C; (i; is another
sigmoid deciding which values to update):

ét = tanh(We¢ - [he—1, 2] + bo)

it:U(Wi'[ht_1,$t]+bi) = Ct:ft*Ot_1+it*C’t.

3. Output hs: run a sigmoid layer that decides which parts
of the cell state to output, then put the cell state through
tanh to push the values between -1 and 1 [17].

o = O'(WO . [ht_l,mt] + bo) = hy = o * tanh(Ct).
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