Neural Network Training under Input-Output Set
Constraints using Reachability and Differentiable
Collision Checking

CS229 FINAL PROJECT REPORT

Adam Dai Derek Knowles
Department of Electrical Engineering Department of Mechanical Engineering
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305
addai@stanford.edu dcknowles@stanford.edu

1 Introduction

Neural networks are commonly used to approximate highly nonlinear functions and create a mapping
between data inputs and data outputs. However, standard neural network training methods do not
allow for specifying input-output constraints of the system. Neural network verification methods
can be deployed to check input-output constraints (1), but generally are only applied after a neural
network has finished training and do not provide real-time feedback for the neural network during
training. This paper introduces a method for constrained neural network training, in which the
network attempts to minimize an objective over some dataset which also ensuring that outputs do not
lie in some unsafe output space.

Providing strict performance guarantees of a neural network will allow for neural networks to be
implemented in safety-critical systems such as autonomous vehicles. For example, it might be useful
to be able to provably guarantee that a neural network controller for an autonomous vehicle can
receive position and velocity as inputs and will never command a velocity that exceeds the physical
capability of the vehicle’s motor (unsafe set in the output space).

This project presents a method for training a neural network under input-output constraints by using
a differentiable zonotope intersection check to move an output zonotope out of collision with a
zonotope representing an unsafe set. While our method generalizes to arbitrarily dimensional input
and output spaces, we provide results for a 2D input to 2D output function approximation problem so
that both the input and output spaces can be easily visualized.

Figure 1 illustrates the input space on the left and the output of the nonlinear function on the right
which we will approximate with our neural network. Additionally, the red square in the plot on the
right represents an unsafe set that we constrain the neural network approximation output to avoid.

2 Related Works

2.1 Neural Network Verification

As previously mentioned, there are a number of neural network verification methods that can be used
for a trained neural network (1). Given a set of uncertain inputs, the Neural Network Verification
(NNV) software tool is able to compute the over-approximation of the reachable set for a feedforward
neural network (2). Although this work also combines neural networks and zonotopes, it differs from
our approach in that they use zonotopes to represent the layer-by-layer output space of a trained
neural network whereas we use zonotopes to compute real-time feedback for a neural network during
training.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



X test Y test
20

15
05

10
0.0

051

00

05 -
L [
1.0 -

10 -05 00 05 10 0 1 2

Figure 1: Input data on the left and nonlinear function output on the right. Color is used to help
identify which input points correspond to which output points. The right plot shows a red square
representing an unsafe set that we constrain the neural network approximation output to avoid.

Safe-by-repair is another alternate neural network validation method which uses a systematic process
of small changes to an existing network to conform to constraints (3). Again, this method is suited
for a trained neural network and provides no guarantees of actually reaching a provably safe solution.

Another recent neural network verification approach uses an anytime algorithm to return unsafe cells
while enumerating polyhedral cells in the input space (rather than iterating layer-by-layer through the
network) (4). Again, this paper is a tool for trained neural networks but does not provide real-time
feedback for a neural network during training.

2.2 Constrained Optimization

There have been a few related approaches that augment neural networks with constrained optimiza-
tion (5). One approach is to use a constrained optimization layer, such as Conditional Random
Field (CRF) or Non Linear Programming (NLP) solver. These layers use the output of the network
as a potential function for optimization while enforcing constriants. Another approach is to use a
constraint violation penalty which is added to the objective loss function, and penalizes violation
of the constraint. However, our method is the first to employ a differentiable zonotope intersection
constraint, which can be backpropagated in order to update the parameters of the network to drive it
towards constraint satisfaction. Using this approach, we are able to guarantee constraint satisfaction
upon convergence of the training, which existing methods are unable to do.

3 Method

3.1 Zonotopes and Constrained Zonotopes

Throughout our project, zonotopes are used to represent sets in the input, output, and neural network
layer space. A zonotope is defined by a center, ¢ € R™, and generators, G € R™*"" where m is the
number of generators.

2(c,G) = {c+ GBI 1Bl <1} M

A constrained zonotope is defined similarly but adds linear constraints determined by A and b such
that AB =b

CZ(c,G,A,b) == {c+GB 1Bl <1, 4B =1b} @)

Note: for the remainder of this report, we will use the term zonotope to refer to constrained zonotopes
for brevity.

3.2 Constrained Zonotope Neural Network Reachability

Given a constrained zonotope CZ(c, G, A, b) as an input and a neural network f, we can propagate
this input zonotope through f to obtain a set of output constrained zonotopes. We perform this
propagation with layer-by-layer reachability. Each layer of the network consists of a linear transform
followed by ReLU activation, or linear transform alone. Thus, we can compute the output set of
constrained zonotopes by applying each layer’s operation.



We describe in the following sections how to perform the neural network layer operations as set
operations on constrained zonotopes:

3.2.1 Linear layer

A linear layer £ parameterized by weight matrix W € R™*™ and bias vector b € R™ applied to a
constrained zonotope Zi, = CZ(c¢, G, A, b) simply corresponds to an affine transformation of the
constrained zonotope:

‘E(Zimwab) = CZ(WC+ b7WG7Av b) 3
3.2.2 ReLU activation

In order to apply a ReLU activation, ReLU(z) = max(0, z), as a set operation on a constrained
zonotope Zi, = CZ(c, G, A, b), we make use of halfspace intersections. Intuitively, when the ReLU
is applied to a high-dimensional set of points, points in negative regions will be compressed to 0.
Mathematically, we can write

ReLU(Z;,) = 2le ZW | where )
1=1
70 _cz (c“'), GO, 4D, b(i)) ®)
and each of the zonotopes Z(*) is given by

40 — %(G+1mx1—-dﬁg(lnxl—-%ﬁ”)c>, (6)

G = [diag(u) G, Opn], @)

AD = [diag(lnxl —2u) G, diag(d(i))} , ®)

o = diag(u?) c, ©)

@) = —diag(lnxl — 2u(i)) ¢c—d®, and (10)

where n is the dimension of the zonotope, m is the number of generators, Gif) € R™ ™ denotes a

matrix containing the absolute value of each element of the generator matrix G, and u(?) € R™*! is
the i*" combination of the n-tuples defined over the set {0, 1}, excluding 0,,« 1. Intuitively, Z @) is
the output zonotope for the i*" "quadrant" of n-dimensional space of the original zonotope Z.

Then, for a neural network f and input zonotope Zi,, we can compose these operations in order to
compute the set of output "reachable" zonotopes Zyy = { Zé&l), e Zéi\{ )}. We call the computation

of this reachable set the input set forward pass, and denote by F(Ziy) = Zou.-

3.3 Zonotope Collision Check

In order to enforce the input-output constraints for our neural network, we need to be able to determine
if two zonotopes are intersecting (to check if the output set of the network intersects with the unsafe
set). For a pair of constrained zonotopes, Z; = CZ(cy,G1, A1,b1) and Zs = CZ(ca, Ga, As, ba),
the intersection of Z; and Zs is given by (6, Prop. 1) as

A1 0 b1
Z1NZy=CZ Cl,[Gl,O], 0 Ay s by . (11D
Gi1 —Go C2 —C1

Let Zn = Z1 N Zy =CZ(c, G, A,b). Z; and Z; collide if Zn is nonempty. We can check if Zn is
nonempty by solving the convex optimization problem:

min. v (12)
st. Az=Db (13)
2], <wv (14)



Then, the intersection Zn is empty if and only if v is less than or equal to 1,
Zn#0 —= v<1. (15)

We can treat this optimization problem as a function of Z; and Z3 which outputs the value v,

which call the collision check value of Z, and Z5. Then, we can define a "constraint loss" function

Leon(Z1, Z2) = (1 — v)%. Minimizing this function drives v to 1, which is the point at which Z; and

Z are just barely not in collision (their boundaries are touching).

In the case of Z,,;, we have a set of zonotopes, so we compute the collision check value v(@ for each

zonotope Zéflz € Zy with an unsafe set represented by zonotope Zynsafe- Then for all v® <1 (i.e.
(2)

collision checks which result in collision), we compute LCOH(Z(EQ, Zunsate) and sum these constraint

losses to obtain a total constraint loss. Thus the total constraint loss can be expressed as

Lcon(Zouh Zunsafe) == Z l{v(i) < 1}L£(Z))n(z(§1112a Zunsafe) (16)

K2

3.4 Constrained neural network training

We can formulate the constrained neural network training problem as follows. Assume we have a
N-layer fully connected feedforward ReL.U network, represented by the function f, which maps
inputs x € D, C R to output y € D, C R% (ie. f: D, — D,). The network is parameterized
by a set of N weights W = {W,..., Wy} and N bias vectors b = {by,...,by}. In addition,
we are given

* Training dataset (z(*),y(9),i = 1,... n of training examples z(*) and labels y(*)
* Objective loss function Lobj(f(g:(i))7 y®) = % > i Hf(x(l)) —y® H2

* Input set Z;, C D, represented by a constrained zonotope

* Unsafe set Zyysafe © D, represented by a constrained zonotope

We wish to find the set of weights and biases which minimize the objective loss over the training
dataset while obeying the input-output constraint:

Hvlvl,rll) Lobj(f(x(l))v Z/(l)) (17)
8.L. f($) g_ﬁ Zunsate VT € Zin
Alternatively, if we consider Zow = f(Zin), we can rewrite the constraint as

Z(Ellxz N Zunsafe = Q) vzész € Zout

In order to solve this problem, we make use of the input set forward pass and collision check. We start
with the standard neural network training setup. Since we are using a small toy dataset, we compute
the loss across the entire dataset, and use it backpropagate and update the weights with gradient steps
using the pytorch SGD optimizer. These updates train the network to learn the data (x(i), y(i)).

In addition, each iteration we also perform an input set forward pass to compute the set of output
zonotopes Z,, under the current state of the network parameters, then compute the constraint loss
with Zsate from Equation 16, then backpropagate and step the constraint optimizer to train the
network to satisfy the constraint.

4 Results

We pick the following nonlinear function to train the network to approximate:

2 .
slora) = 7T 0] as)

which maps inputs vectors in R? to output vectors in R? as shown in Figure 1. We choose Z;, =
Z(02x1, Iox2) and generate training data by sampling 10000 points (@ from Z;, and computing



corresponding output points y(i) = g(x(i)). We use a 2-layer ReLU network with layer sizes 10 x 2
and 2 x 10 which also maps from R? to R? to approximate the function from the data. The unsafe

zonotope is chosen as Zy e = 2 ( Bg} ; 0~5I2><2> and is shown in red in the output space.

The results from both unconstrained and constrained training are shown in Figure 2. We trained
both the unconstrained and constrained for 1000 iterations. The unconstrained training is able to
successfully learn a function approximation for the nonlinear function g(x(i)) and the constrained
training is able to learn the an approximate function while also avoiding the unsafe set, Zngafe-

20

15

10

05

00

05

-1.0

=1 0 1 2 0 1 2 -1 0 1 2 A 0 1 2

(a) Unconstrained training with zonotope representa-  (b) Constrained training with zonotope representation
tion on the left and output points on the right. on the left and output points on the right.

Figure 2: Neural network learns to approximate the nonlinear function, while avoiding the unsafe set
represented by the red square.

Table 1: Experimental Results
| Unconstrained Optimization ~Constrained Optimization

Objective Loss, Lowi(f(z™),y®) 0.00386 0.0115
Constraint Loss, Lcon(Zouts Zunsate) 0.0575 0.00312

Quantitative experimental results in Table 1 show that the constrained training has a lower constraint
loss than the unconstrained training. Our proposed approach is able to move the output out of collision
with the unsafe set, Zynsate. However, the constrained training is only able to achieve lower constraint
loss by increasing the objective loss. The unconstrained training is sensibly able to achieve a lower
objective loss than the constrained training since the unconstrained version simply approximates the
nonlinear function as best as possible while completely ignoring the obstacle zonotope.

5 Conclusion/Future Work

For our project, we developed a method of computing reachable sets of neural networks using
constrained zonotopes, as well as performing differentiable collision checking of those zonotopes
with an unsafe set, and combined these two techniques to yield a novel method of training neural
networks under output unsafe set constraints. We tested our approach for a simple 2D nonlinear
function approximation example, and saw that the network learns to fit the function while avoiding
the unsafe set.

In the future, we will speed up the forward pass step of the constrained training to allow for quicker
training. We will also extend the proposed method to larger networks beyond simple 2D input to 2D
output function approximators. We will also apply to a real-world problem such as aircraft collision
avoidance so that we can compare our constrained results with benchmark results that use traditional
network verification methods. We would also like to compare to existing approaches for constrained
optimization of neural networks, in particular the constraint violation penalty approach, as that one is
most similar to our approach.



6 Contributions

Adam Dai worked on the zonotope classes, collision check loss derivations, neural network
framework, unconstrained training, and constrained training. Derek Knowles worked on plotting
visualizations, conversion from CPU to GPU training, and constrained training. Edgar Chung
(labmate not in CS229) converted the ReLU activation and linear layers (see Section 3.2) to numpy
python functions. Shreyas Kousik (labmate not in CS229) provided advising on zonotope reachability
methods and proofs.

References

[1] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, and M. J. Kochenderfer, “Algorithms for
verifying deep neural networks,” arXiv preprint arXiv:1903.06758, 2019.

[2] H. D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak,
and T. T. Johnson, “NNV: The Neural Network Verification Tool for Deep Neural
Networks and Learning-Enabled Cyber-Physical Systems,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 12224 ILNCS. Springer, jul 2020, pp. 3-17. [Online]. Available:
https://doi.org/10.1007/978-3-030-53288-8_1

[3] U.S. Cruz, J. Ferlez, and Y. Shoukry, “Safe-by-Repair: A Convex Optimization Approach for
Repairing Unsafe Two-Level Lattice Neural Network Controllers,” apr 2021. [Online]. Available:
http://arxiv.org/abs/2104.02788

[4] J. A. Vincent and M. Schwager, “Reachable Polyhedral Marching (RPM): A Safety Verification
Algorithm for Robotic Systems with Deep Neural Network Components,” arXiv, nov 2020.
[Online]. Available: http://arxiv.org/abs/2011.11609

[5] D. Jindal, “Augmenting Neural Networks with Constrained Op-
timization,” 2019. [Online]. Available: https://towardsdatascience.com/
augmenting-neural-networks- with-constraints-optimization-ac747408432f

[6] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz, “Constrained zonotopes: A new
tool for set-based estimation and fault detection,” Automatica, vol. 69, pp. 126—136, 2016.



