Using Unsupervised Learning to

Inform a Binary Classifier Graph for

Multiclassification

Gabriel Spil
SunetID — gspil

Abstract— Can a Supervised Learning model be boosted
by knowledge gained from Unsupervised Learning? Can
predefined labels hide latent patterns in data that may be
helpful in designing a classifier? In this project, Unsupervised
Learning is used to create an algorithmic template for a
Supervised Learning Ensemble Model. The model is tested on
the MNIST database of hand-written digits and can achieve a
greater than 20% misclassification reduction over the SciKit
Learn Logistic Regression Classifier in OVR model.

I. INTRODUCTION

Binary classifiers can be used in multiclass problems.
One approach to multiclass problems using a binary
classifier is to use the One-vs-Rest division of labor. In this
case, one would build N (one per classification) One-vs-
Rest models and use these models to build an ensemble
model where the highest probability of a class denotes
classification.

For the context of the project, we will use the MNIST
database (Modified National Institute of Standards and
Technology) of handwritten digits dataset. This is a set of
70,000 samples that are represented as 28 by 28-pixel
matrixes. Each pixel has a value from 0-255.

The original impetus for the project was based on the
intuition that digits seem to have strong similarities which
each other and group into some sub-classes. At least this is
true from the viewpoint of human perception: some are
rounded, some are linear and some a combination of both.
Additional we may discover mathematical groupings
outside of what is humanly perceptible.

The goal is to see what innate structure might be inherent
in a dataset that is already labeled. Classification in
Supervised Learning is to a degree a modeling assumption
about the nature and similarities of the data entities. It is
common to address data mining with the assumption that the
labeled data best represents the strongest cohesion of the
data set. By putting this assumption aside, we can pose two
questions about the data set and the problem in general. The
first question is “are the current classifications correct for

Stanford CS 229 Spring 2021

the goal(s) of data mining?” And the second question “is
there any latent cohesion in the data outside of the labeling
that might be leveraged during analysis?” The former is a
question that should be asked in any engineering process to
ensure understanding of both the problem and solution
domain. The latter might lead to insight on approaches or
ways to reduce noise in the data set.

II. EXPLORATION OF UNSUPERVISED LEARNINGS

A. Overview

The first phase of the project was to understand what
type of latent natural cohesion might exist in the digit
dataset. The goal is to use Unsupervised Learning to
discover cohesion in a data set, where the cohesion may be
orthogonal to the labels. Then to see if following the natural
cohesion of the data set gives increases in classification
accuracy over solely using the labels in Supervised
Learning.

For the purposes of initial prototyping and investigation,
a subset (~1700 images) of the MNIST handwriting digits
dataset with feature reduction is used.

B. Algorithm

Here is the general algorithm used to explore the natural
cohesion of the dataset subset described above.

Start with the digit set 0-9.

For each set of digits For cluster size in (2 to
digit classes) run K-Means

Determine the highest clustering based on
cluster size. Reduce the digit set based on best fit
and repeat.

If the digit set is 2 then finish.

The above algorithm is a divide-and-conquer approach that
divides the problem at each step into a subset of digits to

classify into a binary set. This is represented in a graph
where the leaf nodes are the final evaluations of a digit.

C. Results

The Unsupervised Learning results suggest that this
approach yields a higher level of classification then standard
K-Means using 10 clusters (one for each digit). It was also
found that precision on the initial set of all digits reduces as
the number of clusters is increased. This leads to the
conclusion that there is stronger cohesion between sub-sets
of digits that can be leveraged to boost Supervised Learning.
Below is a graph showing the decline of precision for each
digit and the number of K-Means clusters are increased.

Digit Precision Per K-Means
Cluster

— () —] — 3 cm—]

5 6 7 8 9

Figure 1 Per Cluster Precision

Figure 2 shows the relationship between the graph-based
classification and a 10-cluster based K-Means
classification. The average precision for K-Means is 63% vs
70% for the graph-based classification.

Digit Classification Precision

2

oMbl

0 1 2 3 4 5 6 7 8 9

B Graph Classification M K-Means
Figure 2 Final Precision

The results above lead to the observation that gains in
accuracy may be attained by using the generated

classification graph to build an ensemble of classifiers based
on the graph.

[II. DESIGN

A. Dataset

The dataset selected is the full 70,000 sample MNIST
database of handwritten digits. Each sample is a graphic
with 28 by 28 pixels, which each pixel having a value from
0-255. The dataset has a dimensionality of 784 features, one
per each pixel. To avoid issues around high dimensionality
we reduce the dimensions to lower levels using the UMAP
Python library. We test with various dimensions and find
that 64 features gives stable results for the project.

B. Models

We produce various models to explore the relationship
between different approaches and effects on accuracy.

C. Graph Models

The Graph Model is the primary model used to test the
premise of using Unsupervised Learning to boost
Supervised Learning. The model is composed of two
primary components. The first component is a Mapping
object that contains the decomposition of the classifications
learned from Unsupervised Learning. Figure 3 contains the
graph generated by a decomposition process run based on
the MNIST dataset compressed from 784 to 64 features.

The Mapping object represents this decomposition in a
Binary Tree, where each node contains a set of digits and
the leaves of the Binary Tree represent a single digit.

L

Figure 3 Classification Decomposition

The second component is a Binary Tree of Classifiers.
The Classifier Binary Tree nodes mirror the Mapping
Binary Tree nodes. Each Classifier is trained on the set of
the training data scoped by the mirrored node in the
Mapping. For example, the root Classifier is trained to
classify (4,7,9) versus the other digits.

Predictions are based on cumulative probability of a
classification along a chain of classifiers starting from the
root to the leaf containing the digit. For each classifier k in
the chain of classifiers that are trained to predict the digit

we return:
k
| | P;(x)
i=1

D. OVR (One vs Rest) Model

The OVR Model is a One vs Rest model that uses the
Scikit Learn Logistic Regression Classifier as a primitive.
The model produces a set of classifiers, one per each class.
The classifier learns the single class versus the remaining
classes. The purpose of implementing a model based on the
primitive Scikit Learn Logistic Regression Classifier was
for comparison against the Graph Model. And this avoided
comparison against a model that was a black box. In the
end the project OVR implementation and the Scikit Learn
Logistic Regression Classifier in OVR mode performed
identically.

The probability of a sample classified as a digit is the
average probability of each classifier.

1/nzk:Pi(x)

The figure 4 shows the static class design for the Graph and
OVR models described above.

Graph_Model
it

OVR_Model

Figure 4 Class Designs for Graph and OVR Models

E. Hybrid Ensemble

The Hybrid Ensemble uses the Graph and OVR model
in unison. Each prediction that does not match in both
models in decided by the highest probability prediction
returned by the models for the sample.

F. Discriminant Ensemble

The Discriminant model uses classifiers trained on
specific pairs of digits. The goal was to attempt to address
specific misclassifications that were evident in the
Confusion Matrix. Commonly misclassified pairs are [1,7]
and [3,8] for example.

IV. MODEL EVALUATION

The primary goal was to evaluate the Graph Model
against the baseline to determine if Unsupervised Learning
could help design an ensemble model. The Graph Model
performed better than any other model evaluated. The
Graph Model has a 50% decrease in misclassification over
the baseline. It also performed about 1% better in accuracy
than the OVR model. This aligns to a reduction in
misclassification of about 20%. Open-source classifiers are
very efficient on this dataset and incremental
improvements are somewhat unexpected.

The Hybrid and Discriminant Models did not add any
meaningful accuracy above the OVR Model. They are
mentioned here as potential theories for improvements
which did not behave differently than the OVR model.

Model Evaluation

0.98
0.97
0.96
0.95
0.94
0.93
0.92
]

0.9

. QQ/ AQ~ {\b é\, Ay
Qso@\ ° o Q‘«\é"‘({b o
Q\‘v

Figure 5 Model Evaluation

V. PROJECT ARTIFACTS

The project artifacts are in the following Jupyter
Notebooks written in Python. The project depends on the
following Python libraries: Numpy, UMAP and Scikit
Learn.

A. LoadProcessData.ipynb

This notebook loads the original handwritten digit
dataset from MNIST (Modified National Institute of
Standards and Technology database).

B. CreateMappings.ipynb

This notebook deals with creating Mapping objects and
persisting them to disk.

C. BuildTestModel.ipynb

This notebook tests models on the original handwritten
digit dataset from MNIST (Modified National Institute of
Standards and Technology database).

VI. RELATED WORKS

There is some work on digit and alphabet topology
which takes a topological view of character similarities.
This is similar to the intuition that was the driving impetus
for the project. Coincidentally, some of the topological
classes defined were “discovered” by the Unsupervised
Learning algorithm.[4]

K-means clustering has also been used to train per digit
autoencoders on the handwritten-digits dataset. The
approach is more detailed and uses EM and GMMs to
classify digits.[6]

There have also been projects that use Unsupervised
Learning to divide the dataset without labels and use 2
generative models to classify. This is an ensemble approach
that uses the two models for consensus. [5]

The last two references show that using Unsupervised
Learning in conjunction with Supervised Learning can
boost classification. My approach is much simpler, but 1
could not find an existing project with the exact approach.

VII. CONCLUSIONS

Latent structures discovered in Unsupervised Learning
can be used to train binary classifiers on multi class
problem. One approach of using learned patterns is to
divide and conquer based on recursive division of the
classification problem.

Future work would include more experimentation on

different datasets to see if other datasets might also show
similar patterns.

REFERENCES

[1] Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., ... others. (2011). Scikit-learn: Machine

(2]

(3]

(4]

(5]

(6]

(71

learning in Python. Journal of Machine Learning Research,

12(Oct), 2825-2830.

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array
programming with NumPy. Nature 585, 357-362 (2020)..

Leland McInnes and John Healy and James Melville. (2020).
“UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction”.

O.Knill, (2011) Lecture 9: Topology of Alphabet. Section 2:
Warm-up with digits.
(http://people.math.harvard.edu/~knill/teaching/mathe320_2011/ha
ndouts/08-worksheet.pdf).

H. Lee, T. Kim, E. Song and S. Lee, "Collabonet: Collaboration of
Generative Models by Unsupervised Classification," 2018 25th
IEEE International Conference on Image Processing (ICIP), 2018,
pp. 1068-1072, doi: 10.1109/1.

G E Hinton, M Revow, P Dayan, "Recognizing Handwritten Digits
Using Mixtures of Linear Models" Department of Computer
Science, University of Toronto. Toronto, Ontario, Canada M5S 1A4.
Sener, O., Hyun Oh Song, Ashutosh Saxena and S. Savarese.

“Learning Transferrable Representations for Unsupervised Domain
Adaptation.” NIPS (2016).

