Multiclass Classification of Fetal Health using
Cardiotocogram Data

JR Ereyi (jrerevi@stanford.edu), Marc Huo (marchuo(@stanford.edu)

1 Introduction

Due to the intricacies of the body of a fetus, as well as the rapid rate at which fetuses develop,
fetal health care is one of the most difficult medical fields to practice effectively. Due to the challenges
around fetal health care, reducing child and maternal mortality rates is of paramount importance to every
modern country. The reduction of child mortality is reflected in several of the United Nations' Sustainable
Development Goals. The UN expects that by 2030, member countries will effectively end preventable
deaths of newborns and children under 5 years of age (Child Survival and the SDGs, 2021). All member
countries are aiming to reduce neonatal mortality to at least as low as 12 deaths per 1,000 live births and
under-5 mortality to at least as low as 25 deaths per 1,000 live births (Child Survival and the SDGs,
2021). Maternal mortality is intrinsically tied with child mortality and has continued to have wide
racial/ethnic gaps, even today. Black, American Indian, and Alaska Native (AI/AN) women are two to
three times more likely to die from pregnancy-related causes than white women, and that disparity only
increases with age (National Center for Health Statistics). Thus, the necessity of mitigating child mortality
as much as possible cannot be overstated.

Electronic fetal monitoring or cardiotocography is a “visual representation” of uterine
contractions and fetal heart rate, which has been recognized as a prominent indicator of fetal health since
the 19th century (Petker, 2018). Certain fetal heart rate patterns are linked to non-reassuring fetal status,
and therefore, fetal heart rate monitoring can help prevent poor fetal outcomes (Petker, 2018). The fetal
heart rate monitor identifies the normal baseline rate and tracks variability, accelerations, and
decelerations to provide insight into a baby’s level of stress, oxygenation, acidemia (increase in hydrogen
ion blood concentration), and other vital signs (Petker, 2018). A host of models were applied, including
XGBoost, LightGBM, Gradient Boosting, Random Forest, Multi-layer Perceptron, Support Vector,
Decision Tree, K-Nearest Neighbors, Linear Support Vector, and Logistic Regression, to the
cardiotocography data to predict fetal health outcomes and level of care.

2 Related Work

Cardiotocographic data has previously been used to classify fetal health. Before the widespread
adoption of neural networks and advanced machine learning methods, cardiotocograph data was largely
analyzed by individual cardiologists, requiring expert interpretation, which bottlenecks its applicability
and accessibility in resource-scarce areas and introduces high intra-observer error/variation (Hoodbhoy et
al., 2019). As such, machine learning has revolutionized the way cardiotocograph data is being processed.
Previous studies in this field of research have generally followed the approach of applying a machine
learning model to cardiotocograph data to test the model’s efficacy in classifying the fetal health data.
Sundar et al. used a supervised artificial neural network (ANN) to classify CTG (cardiotocograph) data

similarly separated into Normal, Suspicious, and Pathological, and discovered that the ANN classifier was
effectively able to identify the different conditions with high accuracy. Peterek et al. applied the Random
Forest, Classification and Regression Tree, and Self-Organizing Map models to cardiotocographic data,
and discovered the Random Forest Model was able to classify the data with over 94% accuracy. Aside
from just applying common machine learning models, other studies, like the one by Ocak et al. applied a
more unique model, based on adaptive neuro-fuzzy inference systems (ANFIS), to the cardiotocographic
data separated into normal and pathological examples. This model was able to classify normal and
pathological examples with accuracy 97.2% and 96.6%, respectively. All of these approaches were
effective in classifying the data, largely highlighting that irrespective of the model chosen, machine
learning models were generally effective in successfully classifying the examples.

3 Dataset and Features

The dataset for this experiment was obtained from Ayres-de-Campos et al. and is a database
repository of 2,000+ labeled records of Cardiotocograph metrics that includes base ground-truth data
separated into 3 classifications: Normal, Suspect, and Pathological. The dataset includes 21 extracted
features from the CTG, and whether or not the example was Normal, Suspect, and Pathological. In order
to begin applying the models to our data, we started by preprocessing the data, which included removing
null and duplicate values from our dataset, and visualizing the raw fetal health data, in order to see how
our samples were distributed between the classifications. After our preprocessing, we were able to remove
13 duplicate examples, leaving us with 2113 samples total. Of those 2113 samples, 1646 were classified
as “Normal”, 292 were classified as “Suspect”, and 175 were classified as “Pathological” (2012). Samples
were separated into a standard 70/30 train/test split.

Features Scores

baseline value 137.833999

accelerations 194.618345

prolongued_decelerations 507.304309
abnormal_short_term_variability 337.703020
mean_value_of_short_term_variability 118.050463
percentage_of_time_with_abnormal_long_term_var... 335.386156
histogram_mode 276.382795

histogram_mean 298.759569

histogram_median 249.699523

histogram_variance 150.955827

Scores

Figure 1: Feature importance scoring produced with KBest algorithm Table 1: Most important features

Next, to better understand feature importance and correlation, a confusion matrix was assembled
to observe correlation coefficients, to which a KBest algorithm was applied to score the extracted features
(Fig. 1) and eventually select the most important features to be used as our model inputs (Table 1). The
feature matrix was then standardized by removing the mean and scaling to unit variance.

4 Methods

All classifiers were implemented using sci-kit-learn, except for the LightGBM classifier and the
XGBoost classifier, which were implemented using lightgbm and xgboost libraries, respectively.

Logistic Regression
Logistic Regression allows us to classify our data by modeling our prediction, thatis p(y = 1]x; 0)
using a logistic function dependent on x, 0. From Lecture 3,

1
ho(z) = g(0"z) = 1t e7=
This logistic function squashes the output between 0 and 1, which allows us to predict 1 when hyg(x) > 0.5,
and 0 if hg(x) < 0.5 (Ng, 2018).

Random Forest / Decision Tree
The Random Forest classifier works by establishing a group of decision trees, where each decision tree
classifies the example, and the class with the most decision tree predictions becomes the model’s
prediction for the example. The significance of Random Forest lies in the fact that the individual tree
models, as they are uncorrelated, allow for the models to cover the errors of the others. These individual
decision trees work by learning decision rules from the features of the data, then using those decision
rules to predict, by following down the nodes of a decision tree (Yiu, 2019). In particular, Random Forest
is best suited for our multiclass classification of fetal health given the skewed/unbalanced dataset.

K-Nearest Neighbors
The K-Nearest Neighbors classifier works off of the assumption that examples close in distance to one
another belong to the same class. It uses this assumption to classify examples by looking at the k£ nearest

neighbors for every example and assigning that example to the most common class of its neighbors
(Harrsion, 2019).

Support Vector Classifiers (Linear and Nonlinear)
Support Vector Machines work to classify examples by attempting to find a hyperplane decision boundary
to divide our data effectively into the individual classes of data. The goal of an SVM classifier is to
maximize the distance from this hyperplane boundary (it is a line in the case that the SVM is linear) to the
examples in the two classes (Ng, 2020).

Multi-Layer Perceptron (Neural Network)
Neural networks are models that are non-linear both in 8and in x, the building block of which are
neurons. Neurons take in weighted inputs and can produce an output based on an activation function.
Neural networks work by stacking neurons so that one neuron takes in a weighted input and feeds it to the

next neuron, applying those activation functions in every hidden layer, until it reaches the output layer
(Ma, 2020).

Gradient Boosting Classifiers (LightGBM and XGBoost included)
Gradient Boosting classifiers work by first using a weak learning algorithm to make a prediction,
typically a decision tree, then combining subsequent machine learning models to improve the power of
the initial model. Typically, the way it works is it fits the first model to the data, then a second model is
built to focus on predicting the cases where the first model failed. This process continues, where each new
model is attempting to fill the holes in knowledge of the previous models (Singh, 2018).

5 Experiments/Results/Discussion

The results for our models corroborated what was found in

Nousl Sooces similar studies discussed in the “Related Works™ section, that

7 Gradient Boosting 0.955836 irrespective of the model chosen, machine learning models
8 LightGBM Classifer 0.955836 were generally effective in successfully classifying the
examples as either Normal, Suspected, or Pathological.

1 Random Forest 0.949527

9 XGBoost Classifier 0.949527 From our model scores, it is clear that all of the models

2 K-Nearest Neighbors 0.940063 performed well on our dataset (Table 2), all with scores above

6 Multi-layer Perceptron 0.935331 0.89. We also eyaluateq all the algorlthms. performance with
N confusion matrices, which shows the relation between correct

d Sl Bt and incorrect predictions (Fig. 2). Of all our classifiers,

3 Support Vector 0.921136 Gradient Boosting and LightGBM performed the best,

0 Logistic Regression 0.895899 showing that there is a performance increase from using a

radien ing algorithm
4 Linear Support Vector 0.892744 gradient boosting algorithm, where new models are added to

offset the errors from previous models. Interestingly enough,
Table 2: Classifier Model Scoring Random Forest performed just as well on our dataset as the

XGBoost Classifier. Random Forest and XGBoost both work
by combining weaker learning models to make stronger predictions, but differ in that the decision trees in
Random Forest are all independent of one another, but the decision trees that get added in XGBoost are
added to fill holes in previous models. The act of adding multiple models to strengthen our prediction
decreases the variance of our prediction, and for XGBoost, applying the models to offset errors in
previous models decreases the bias of our prediction. As the scores are the same for XGBoost and
Random Forest, this implies that the decision trees that got added in XGBoost were independent of one
another, and the added new decision trees didn’t decrease the bias of the model, only the variance.
Therefore, the models added during XGBoost did not offset the error of previous models, as is the
intention of XGBoost.

precision recall fl-score support precision recall fl-score support

1.0 0.97 0.99 0.98 497 1.0 0.96 0.98 0.97 497

2.0 0.90 0.80 0.85 90 2.0 0.89 0.76 0.82 90

3.0 0.92 0.94 0.93 47 3.0 0.88 0.98 0.93 47

accuracy 0.96 634 accuracy 0.95 634
macro avg 0.93 0.91 0.92 634 ‘macro avg 0.91 0.90 0.91 634
weighted avg 0.95 0.96 0.95 634 Wweighted avg 0.95 0.95 0.95 634

Table 3: Classification Tables for LightGBM Before vs. After Optimization

As LightGBM was one of our two best-performing models, we chose this model to optimize and
tune the hyperparameters - we did so using 3-Fold grid search cross-validation. In doing so, however, we
noticed that the score for the classifier decreased after the hyperparameters were tuned (Table 3). This
could be because Gradient Boosting models are very prone to overfitting, and tuning the hyperparameters
might have caused the model to overfit the training data, decreasing the prediction accuracy of the testing
data.

0013 00032

- 0028 011 0.0063

o= 0.0016 0 0073

0 1 2‘

Figure 1: Confusion matrix for optimized LightGBM model

6 Conclusion

In our applications project, we set out to measure the efficacy of several different machine
learning models on classifying a dataset of cardiotocographic data as either Normal, Suspect, and
Pathological. After we preprocessed the dataset, we were able to remove 13 duplicate examples, leaving
us with 2113 samples total. Of those 2113 samples, 1646 were classified as “Normal”, 292 were classified
as “Suspect”, and 175 were classified as “Pathological” (2012). Samples were separated into a standard
70/30 train/test split. A total of 10 classifiers were run on this dataset, including XGBoost, LightGBM,
Gradient Boosting, Random Forest, Multi-layer Perceptron, Support Vector, Decision Tree, K-Nearest
Neighbors, Linear Support Vector, and Logistic Regression, all of which, barring XGBoost and
LightGBM were implemented using sci-kit-learn, whereas those two were implementing using xgboost
and lightgbm respectively. Analysis of our models showed us that LightGBM and Gradient Boosting
performed the best out of all of our models, due to the ability of Gradient Boosting models to use
subsequent models to offset the errors of previous models. However, in trying to optimize LightGBM and
tune our hyperparameters, we saw that doing so actually decreased the effectiveness of our classifier. This
could be due to the propensity of Gradient Boosting models to overfit training data, leading to worse
performance on the testing data after the model was optimized. Further steps include tuning the
hyperparameters for other models that we looked at, to see if there was a significant benefit to tuning the
hyperparameters of models not as prone to overfitting as Gradient Boosting.

7 Contributions

Marc Huo - Feature Analysis and implementing LightGBM, Gradient Boosting, K-Nearest Neighbors,
Linear Support Vector, and Decision Tree models. Collaborated on tuning hyperparameters.

JR Ereyi - Preprocessing and implementing XGBoost, Random Forest, Multi-layer Perceptron, Support
Vector, and Logistic Regression models. Collaborated on tuning hyperparameters.

Our work can be found at:
https://colab.research.google.com/drive/1 Au6JpBeGQjgBKgoOVTPscjKFy6To8fiz?usp=sharing

8 References

Ayres de Campos et al. (2000) SisPorto 2.0 A Program for Automated Analysis of Cardiotocograms. J
Matern Fetal Med 5:311-318

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). New
York, NY, USA: ACM. https://doi.org/10.1145/2939672.2939785

“Child Survival and the SDGs.” UNICEF DATA, 6 Jan. 2021,
data.unicef.org/topic/child-survival/child-survival-sdgs/.

Harrison, O. (2019, July 14). Machine Learning Basics with the K-Nearest Neighbors Algorithm.
Medium.
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d
01761.

Hoodbhoy, Z., Noman, M., Shafique, A., Nasim, A., Chowdhury, D., & Hasan, B. (2019). Use of
Machine Learning Algorithms for Prediction of Fetal Risk using Cardiotocographic Data. International
journal of applied & basic medical research, 9(4), 226-230.

https://doi.org/10.4103/ijabmr.IJABMR 370 18

“Intrapartum Complications,” Family Medicine Obstetrics, 3rd Edition, 2008, pp. 454-499. Edited by
Stephen D. Ratcliffe, Elizabeth G. Baxley, Matthew K. Cline, and Ellen L. Sakornbut.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... Liu, T.-Y. (2017). Lightgbm: A highly
efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30,
3146-3154.

Ma, T. (2020). Lecture on Deep Learning. Personal Collection of T. Ma, Stanford University, Stanford,
CA.

National Center for Health Statistics. Racial and Ethnic Disparities Continue in Pregnancy-Related
Deaths, 2019. Public-use data file and documentation.
https://www.cdc.gov/media/releases/2019/p0905-racial-ethnic-disparities-pregnancy-deaths.html. 2019.
Ng, A. (2018). Lecture on Supervised Learning and Logistic Regression. Personal Collection of A. Ng,
Stanford University, Stanford, CA.

Ng, A., Ma, T. (2020). Lecture on Kernel Methods and Support Vector Machines. Personal Collection of
A.Ng & T. Ma, Stanford University, Stanford, CA.

Ocak, H., Ertunc, H.M. Prediction of fetal state from the cardiotocogram recordings using adaptive
neuro-fuzzy inference systems. Neural Comput & Applic 23, 1583—-1589 (2013).
https://doi.org/10.1007/s00521-012-1110-3

Peterek T., Gajdo$ P., Dohnalek P., Krohova J. (2014) Human Fetus Health Classification on
Cardiotocographic Data Using Random Forests. In: Pan JS., Snasel V., Corchado E., Abraham A., Wang

SL. (eds) Intelligent Data analysis and its Applications, Volume II. Advances in Intelligent Systems and
Computing, vol 298. Springer, Cham. https://doi.org/10.1007/978-3-319-07773-4 19

Pettker, Christian M., and Katherine H. Campbell. “Antepartum Fetal Assessment,” Avery’s Diseases of
the Newborn, 10th Edition, 2018, pp. 145-157.

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Singh, H. (2018, November 4). Understanding Gradient Boosting Machines. Medium.
https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab.

Sundar, C., Chitradevi, M., & Geetharamani, G. (2012). Classification of cardiotocogram data using
neural network based machine learning technique. International Journal of Computer Applications,
47(14).

Yiu, T. (2019, August 14). Understanding Random Forest. Medium.
https://towardsdatascience.com/understanding-random-forest-58381e0602d2.

