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Abstract—Functional near-infrared spectroscopy (fNIRS) is
a revolutionary neuroimaging modality that provides unprece-
dented insights into brain activity. However, measuring the
nuanced hemodynamic responses during dyadic inter-brain
coherence—an fNIRS paradigm referred to as hyperscanning—
remains largely unexplored. This work proposes a novel convo-
lutional neural network-based approach to dyadic gender com-
position and task classification for an extensive hyperscanning
dataset. The raw change in oxy-hemoglobin (HbO) is tested as
input data against the inter-brain signal similarity computed via
dynamic time warping. The proposed approach matches state-of-
the-art classification accuracy, thereby providing a new avenue
for exploring and understanding complex brain behavior.

Index Terms—hyperscanning, convolutional neural network,
dynamic time warping

I. INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a recently
developed technology for studying brain activity and repre-
sents a low-cost, non-invasive alternative to traditional imaging
modalities such as functional magnetic resonance imaging
(fMRI). fNIRS uses near-infrared light to measure the hemo-
dynamic response of the cerebral cortex to sensory, motor,
and cognitive stimuli [1], [2]. This imaging modality typically
consists of a lightweight sensor cap measuring hemodynamic
activity across a series of channels, permitting fNIRs to
be used in more ecologically valid situations and extending
imaging accessibility to populations that cannot undergo fMRI
scanning [3]. {NIRS has emerged as an indispensable method
for researching brain computer interfaces (BCI) wherein brain
signals are converted into commands for an external system
[4]. BCI represent an avenue for persons with motor disabili-
ties to express themselves and interact with the world [1].

Hyperscanning—a subdiscipline of {NIRS research wherein
neural activity is simultaneously measured from two or more
participants—is an area of particular interest in the neu-
roimaging community. Nuanced inter-brain coherence patterns
emerge depending on the gender composition [5], [6] and task
objectives [7] of the interacting dyad. Exploring and mapping
these complex interactions more fully is essential to designing
robust BCI systems, interpreting complex psychosocial inter-
actions [8], and understanding the functionality of the human
brain at a fundamental level.

In this work we propose a novel approach to dyadic gender
composition and task classification using a modified form of

the ubiquitous LeNet-5 convolutional neural network (CNN)
architecture proposed by Lecun et al. [9]. We test two sets of
input data—one set consisting of the difference in normalized
oxy-hemoglobin (HbO) changes between participants, and one
set consisting of inter-brain signal similarity as computed via
dynamic time warping (DTW). To the best of the author’s
knowledge, this is the first time that CNNs have been leveraged
to classify hyperscanning tasks and one of the first applications
of CNNs within the broader fNIRS community. We validate
our approach on an extensive hyperscanning datset of cooper-
ative and competitive dyadic tasks obtained by the Center for
Interdisciplinary Brain Sciences Research (CIBSR) at Stanford
University, matching current state-of-the-art accuracy.

II. RELATED WORK

BCI applications demand highly accurate classification of
brain signals to distinguish between different user intentions,
and thus fNIRS data classification remains an outstanding
research question of great importance in the field of neu-
roimaging [4]. For example, the timely interpretation of fNIRS
data could be leveraged to control prostheses [10], detect
habituation in automated driving [11], or inform automated
lane-change driving features [12].

Researchers have employed a multitude of machine learning
techniques to classify fNIRS signals. Shamsi et al. imple-
mented a support vector machine (SVM) with a quadratic
polynomial kernel to classify movement execution tasks [4].
Peng et al. tested both a linear discriminant analysis al-
gorithm and an SVM algorithm to classifiy motor imagery
tasks wherein participants moved an on-screen object in their
imagination [1]. Power et al. employed a hidden Markov
model (HMM) to differentiate between mental arithmetic
and music imagery, demonstrating the potential for a BCI
device based on cognitive tasks rather than motor tasks [13].
HMMs have also successfully identified finger-tapping tasks
[14] and detected music imagery [15] from fNIRS data. Still
other researchers have conducted fNIRS classification tasks
using K-nearest neighbors and Naive Bayes [2], [10], [16].
Saadati et al. [17] and Asgher et al. [18] investigated the
use of convolutional neural networks for mental workload
classification; these remain the only instances of CNN-based
classifiers for fNIRS data.



Accurately classifying motor tasks and cognitive imagery
is empirically challenging even in the simplest instances
of binary classification. Shamsi et al. achieved an average
accuracy of 70.43 % [4] and Power et al. obtained an average
accuracy of 77.20 % for binary classification problems, while
Shamsi et al. and Peng et al. achieved accuracies of 78.55 %
and 39.98 % for five and four-class problems, respectively.
The two CNN-based approaches yield some of the highest
accuracies for fNIRS classification tasks, with average four-
class classification accuracies of 89.00% in [17] and 83.45% in
[18]. The ability of CNNs to extract the most salient features
with minimal levels of a priori feature extraction likely
contributes to the state-of-the-art classification accuracies and
inspires the approach proposed in this work.

Even less research has been conducted in the nascent
hyperscanning domain. Baker et al. [5] and Cheng et al. [6]
conducted wavelet coherence tests on fNIRS hyperscanning
data for dyadic cooperation tasks and found that inter-brain
coherence is highly dependent on the gender composition of
the dyad. Cui et al. explored brain activity in the superior
frontal cortex during both cooperation and competition tasks
[7]. Nozawa et al. studied neural synchrony between individ-
uals engaged in cooperative conversation [19]. To the best of
the author’s knowledge, no researchers have employed CNNs
for hyperscanning classification tasks. In this work we propose
a CNN architecture loosely based on the LeNet-5 architecture
to predict dyadic gender compositions given knowledge of the
task type and to predict the task type given knowledge of the
dyadic gender composition.

III. HYPERSCANNING DATASET AND FEATURES

A. Data Acquisition

We utilized the extensive hyperscanning dataset collected
by the Center for Interdisciplinary Brain Sciences Research at
Stanford University. The dataset is not open source; access was
granted from CIBSR after the completion of a human subjects
research protections course. All sample data presented in this
work is sanitized of personal identifiers.

A total of 222 participants (110 females, 112 males) were
recruited for the hyperscanning study. Each participant was
paired with a random individual to form a dyad. Participants
did not interact prior to the study and were not matched
based on age or ethnicity. Each dyad performed a series of
consecutive cooperation and competition tasks on computer
screens; the tasks were grouped into blocks of twenty tasks and
the order was shuffled to reduce bias. For cooperation tasks,
participants attempted to synchronize a button press event; for
competition tasks, participants raced to press a button before
their partner. A continuous wave fNIRS measured cortical
hemodynamic activity in each participant’s right prefrontal
cortex and right temporal cortex; a total of 22 channels
of optical density data were nominally recorded for each
participant. A full summary of the data collection process and
task sequencing is discussed in [5].

B. Preprocessing

The fNIRS imaging modality is sensitive to vascular dy-
namics and the raw data thus contained noise artifacts; most
of these artifacts were removed via a bandpass filter shortly
after the initial data collection sequence. The optical density
data was then converted to oxy-hemoglobin data using the
modified Beer—Lambert law [5].

In the original experimental design, the duration between
tasks was varied to reduce habituation bias. Distributions of the
number of data points recorded for cooperation tasks is shown
in Fig. 1; the distribution for competition tasks is similar and
is thus omitted for brevity. The fNIRS recorded optical density
data at a frequency of 7.8125 Hz; thus, a task with 60 data
points had a duration of 7.68 seconds. To convert the data into
a consistent input size for the proposed CNN-based approach,
we trimmed the time series to only consider the last 50 data
points for each task; establishing consistent timing intervals is
common practice in fNIRS classification problems [1], [4].
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Fig. 1: Distribution of cooperation task durations.

Additionally, channels periodically stopped recording dur-
ing the trials, resulting in intermittent columns of NaN values
in the dataset. This could either be due to improper contact
between the fNIRS cap optodes and the participant’s scalp or
a malfunctioning sensor. Fig. 2 shows the missing cooperation
task counts for each channel. The distribution for competition
tasks is virtually identical and is omitted for brevity. Channels
1, 10, and 19 did not record data during any tasks, likely
indicating a malfunction; we thus removed these channels from
the dataset. Furthermore, we removed channel 8 as it failed to
record data on nearly ten percent of all tasks. Channels 2, 5,
and 6 infrequently stopped recording during the experiments;
since data is typically present for these channels, it is more
likely that the occurrences of missing data represent isolated
incidents of improper optode contact. Instead of removing
these channels, we simply filled NaN values with the mean
value of the adjacent channels at the given time step.

We removed all male-female dyads, keeping only male-male
and female-female dyadic gender compositions to simplify the
classification task; binary classification is a typical first step in
fNIRS classification studies [1], [13]. Future work will extend
classification to the multi-class case with all three dyadic
gender compositions present in the dataset. We normalized
all remaining data to complete the data cleaning process.



Cooperation Task Counts with Missing Channel Data
2500

2000
1500

-
=)
=
o

© 1000

500

0 - — .
0123456789101112131415161718192021

Channel

Fig. 2: Occurrences of missing cooperation task channel data.

At the conclusion of the data cleaning process, a total
of 3,188 tasks remained in the dataset. Table I displays a
summary of key dataset statistics.

TABLE I: Hyperscanning Dataset Statistics

Quantity Count
Total Tasks 3,188
Cooperation Tasks 1,569
Competition Tasks 1,619
Total: 3,188
Male-Male Dyads 1,675
Female-Female Dyads 1,513
Total: 3,188

Fig. 3 displays post-processed sample data from the hyper-
scanning dataset. Normalized single channel data from one
participant is plotted against the matching channel data from
their dyadic partner. The vertical red lines denote the end of
a given task and the start of a subsequent task.
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Fig. 3: Example dyadic data.

C. CNN Input Data

Convolutional neural networks are capable of extracting the
salient features from input data with minimal a priori interven-
tion and feature engineering—a phenomenon that drives the
ubiquitous use of CNNs in image recognition and computer
vision tasks. In this project we thus devote minimal attention to

handcrafted feature engineering and instead test the proposed
CNN-based classifier on two sets of minimally processed data:

1) Differences in normalized oxy-hemoglobin data

2) Channelwise similarity scores computed via dynamic

time warping

1) Oxy-Hemoglobin Data: The raw optical density data
recorded by the fNIRS cap was converted to oxy-hemoglobin
data using the modified Beer—Lambert Law for scattering me-
dia; a discussion of the Beer—Lambert Law and its applications
in fNIRS technology is presented in [20].

If we let HP! denote the raw HbO data for the first
participant in a dyad and HP? denote the raw HbO data for
the second participant, then we define the first set of input
data as the difference in normalized HbO data between the
two participants,

Pl P2 ;
”Hj H2 — HH] HQfor J channels

for each dyad in the dataset. Fig. 4 presents a sample plot
of the difference in normalized HbO data for a sample dyad
completing a competition task:
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Fig. 4: Oxy-hemoglobin input data.

2) Channelwise Similarity Scores: We tested a second set
of input data comprising the channelwise similarity scores
computed via dynamic time warping. DTW is a technique to
find an optimal alignment between two sequences of time-
series data. As the name suggests, the sequences are warped
nonlinearly to match each other [21]. Salient features in the
data are then compared independent of nonlinearities in the
time domain. The similarity score computed via DTW might
thus more accurately describe how well two time series match
each other when compared to a more conventional Euclidean
distance measurement, as similar features will still be detected
even if they do not line up exactly. Zhu and Najafizadeh
successfully employed DTW to average fNIRS signals and
localize active brain ragions in [22]. Fig. 5 shows how DTW
can be used to align time series with a nonlinear time domain
dependency.
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Fig. 5: Optimal alignment produced by DTW [21].
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Fig. 6 presents the channelwise similarity scores for the
same competition task shown in Fig. 4. Higher scores indicate
a higher degree of similarity between the time series data. For
example, channel 12 data for participant 1 is relatively similar
to channel 15 data for participant 2 according to the DTW
distance metric.

Inter-Channel Similarity Scores
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Fig. 6: Channelwise similarity score input data.

IV. METHODS
A. LeNet-5 CNN

Convolutional neural networks are a class of deep neural
network that has achieved tremendous success in the object
detection and image classification domains. Three defining
characteristics of CNNs are local receptive fields, weight
replication, and subsampling [9].

Data is passed layer to layer in a CNN, and inputs at one
layer are received from a small region of points—referred
to as a local receptive field—in the previous layer. Local
connections allow a CNN to extract the most basic visual
features such as edges and corners and then assemble the
features in subsequent layers to extract higher order features.
Furthermore, weight vectors are held identical for particular
units with receptive fields scattered across the input image—a
paradigm known as weight replication ( [23]-[25], as cited
in [9]). Units with identical weights are combined into a
single plane and output a feature map. This effectively shares
feature detectors across the entire image. Finally, the concept
of subsampling is used to reduce the resolution of the feature
maps and reduce the output sensitivity to distortions and

feature shifts [9]. Subsampling can be implemented using an
average pooling layer in TensorFlow!.

Lecun et al. developed the iconic CNN architecture re-
ferred to as LeNet-5, shown in Fig. 7, to incorporate the
three previously discussed CNN design paradigms. Two two-
dimensional convolutions are performed on the input data,
with intermediate subsampling layers reducing the resolution
of the feature maps. The architecture concludes with fully
connected layers leading to an output layer; the original LeNet-
5 architecture proposed a convolutional layer fully connected
to a single dense layer [9]. We employ a CNN based on the
original LeNet-5 design to provide baseline results.

[T
l [ l

Convolutions

INPUT

Subsampling  Convolutions Subsampling Fully Connected Layers

Fig. 7: LeNet-5 CNN architecture.

B. Proposed CNN Architecture

The original LeNet-5 CNN employs average pooling layers
to subsample the feature maps. We propose an alternate
CNN architecture that closely mirrors the LeNet-5 scheme
but does not contain the average pooling layers; an architec-
tural diagram is presented in Fig. 8. Removing the pooling
layers theoretically heightens the output sensitivity to slight
distortions in the feature map but maintains a high resolution
throughout each layer. We suspect that the elevated resolution
will enable the proposed CNN to extract nuanced features in
the input fNIRS data and test this theory in the subsequent
section.
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Fig. 8: Proposed CNN architecture.

V. RESULTS AND DISCUSSION

We implemented a modified version of the LeNet-5 CNN
in TensorFlow with two sets of alternating two-dimensional
convolution and average pooling layers, followed by three
dense layers with 128 units each. We also implemented our
proposed CNN that does not include the average pooling
layers. The architectures were tested on the series of four
binary classification tasks described in Table II.

Uhttps://www.tensorflow.org/



TABLE II: Classification Tasks

« MM Task Prediction: Given male-male dyadic
data, predict if task is cooperation or competition

o FF Task Prediction: Given female-female dyadic
data, predict if task is cooperation or competition

o Coop Gender Prediction: Given cooperation task
data, predict if dyad is male-male or female-female

o Comp Gender Prediction: Given competition task
data, predict if dyad is male-male or female-female

\. J

We conducted the four listed tests with both sets of input
data—normalized differences in HbO and channelwise simi-
larity scores—on both CNN architectures. We used three-fold
cross-validation to estimate the accuracy of each method. The
CNNs were trained for 20 epochs with a batch size of 32 to
balance the bias-error tradeoff. Results for the HbO input data
are presented in Table IIT and results for the DTW similarity
score input data are presented in Table IV.

TABLE III: Results with Raw Input Data

Classification Task Pooling Accuracy (%)

MM Task Prediction Yes 53.88
No 55.53
FF Task Prediction Yes 54.48
No 57.20
Coop Gender Prediction Yes 62.99
No 66.95
Comp Gender Prediction Yes 62.07
No 65.29

TABLE IV: Results with DTW Input Data

Classification Task Pooling Accuracy (%)

MM Task Prediction Yes 55.86
No 65.47
FF Task Prediction Yes 60.28
No 66.08
Coop Gender Prediction Yes 75.80
No 80.61
Comp Gender Prediction Yes 72.84
No 78.88

The tabulated results indicate it is easier to classify dyadic
gender composition given the task type than it is to classify
the task type given the gender composition. Furthermore,
the results indicate that removing the pooling layers gives
more predictive power to the CNN. The CNN achieves a
higher classification accuracy when receiving channelwise
similarity scores as the input data. The classification accu-
racies obtained with similarity score inputs and pooling layers
removed matches the fNIRS binary classification state-of-the-
art accuracies discussed in Section II. Confusion matrices
displaying cumulative predictions across all cross-validation
folds are shown in Figs. 9a-9d. For the sake of brevity, only

results for the experiments with similarity score inputs and
pooling layers removed are displayed.
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Fig. 9: Confusion matrices for experiments with similarity
score inputs and pooling layers removed.

VI. CONCLUSION

Functional near-infrared spectroscopy is a nascent neu-
roimaging modality that is receiving increasing interest from
the medical community. However, nuanced hemodynamic be-
haviors recorded via fNIRS hyperscanning procedures during
dyadic inter-brain coherence is not yet fully understood. In
this work we presented a CNN-based classifier for predicting
the gender composition and task type of dyads performing
cooperative and competitive tasks. We computed channelwise
similiarity scores for each dyad using dynamic time warping
and obtained state-of-the-art classification accuracy on binary
fNIRS classification tasks. To the best of the author’s knowl-
edge, this is the first use of a convolutional neural network
to classify fNIRS signals, thereby providing neuroimaging
researchers with a novel strategy for analyzing dyadic inter-
brain coherence. In future work we will explore alternate
CNN architectures and extend the binary classification tasks
to multi-class classification tasks.

ACKNOWLEDGMENT

The author thanks the Center for Interdisciplinary Brain
Sciences Research for dataset access and Dr. Stephanie Balters
for useful discussions.



(1]

[2]

[3

—

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

H. Peng, J. Chao, S. Wang, J. Dang, F. Jiang, B. Hu, and D. Majoe,
“Single-trial classification of fnirs signals in four directions motor
imagery tasks measured from prefrontal cortex,” IEEE transactions on
nanobioscience, vol. 17, no. 3, pp. 181-190, 2018.

H. Ayaz, P. A. Shewokis, S. Bunce, M. Schultheis, and B. Onaral,
“Assessment of cognitive neural correlates for a functional near infrared-
based brain computer interface system,” in International Conference on
Foundations of Augmented Cognition. Springer, 2009, pp. 699-708.
N. Liu, X. Cui, D. M. Bryant, G. H. Glover, and A. L. Reiss, “Inferring
deep-brain activity from cortical activity using functional near-infrared
spectroscopy,” Biomedical optics express, vol. 6, no. 3, pp. 1074-1089,
2015.

F. Shamsi and L. Najafizadeh, “Multi-class classification of motor
execution tasks using fnirs,” in 2019 IEEE Signal Processing in Medicine
and Biology Symposium (SPMB). 1EEE, 2019, pp. 1-5.

J. M. Baker, N. Liu, X. Cui, P. Vrticka, M. Saggar, S. H. Hosseini,
and A. L. Reiss, “Sex differences in neural and behavioral signatures of
cooperation revealed by fnirs hyperscanning,” Scientific reports, vol. 6,
no. 1, pp. 1-11, 2016.

X. Cheng, X. Li, and Y. Hu, “Synchronous brain activity during
cooperative exchange depends on gender of partner: A fnirs-based
hyperscanning study,” Human brain mapping, vol. 36, no. 6, pp. 2039—
2048, 2015.

X. Cui, D. M. Bryant, and A. L. Reiss, “Nirs-based hyperscanning
reveals increased interpersonal coherence in superior frontal cortex
during cooperation,” Neuroimage, vol. 59, no. 3, pp. 2430-2437, 2012.
T. Koike, H. C. Tanabe, and N. Sadato, “Hyperscanning neuroimaging
technique to reveal the “two-in-one” system in social interactions,”
Neuroscience research, vol. 90, pp. 25-32, 2015.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

J. Shin and J. Jeong, “Multiclass classification of hemodynamic
responses for performance improvement of functional near-infrared
spectroscopy-based brain—computer interface,” Journal of biomedical
optics, vol. 19, no. 6, p. 067009, 2014.

S. Balters, S. Sibi, M. Johns, M. Steinert, and W. Ju, “Learning-
by-doing: Using near infrared spectroscopy to detect habituation and
adaptation in automated driving,” in Proceedings of the 9th International
Conference on Automotive User Interfaces and Interactive Vehicular
Applications, 2017, pp. 134-143.

S. Sibi, S. Baiters, B. Mok, M. Steiner, and W. Ju, “Assessing driver
cortical activity under varying levels of automation with functional near
infrared spectroscopy,” in 2017 IEEE Intelligent Vehicles Symposium
(1v). 1IEEE, 2017, pp. 1509-1516.

S. D. Power, T. H. Falk, and T. Chau, “Classification of prefrontal ac-
tivity due to mental arithmetic and music imagery using hidden markov
models and frequency domain near-infrared spectroscopy,” Journal of
neural engineering, vol. 7, no. 2, p. 026002, 2010.

R. Sitaram, H. Zhang, C. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa,
K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel
near-infrared spectroscopy signals of motor imagery for developing a
brain—computer interface,” Neurolmage, vol. 34, no. 4, pp. 1416-1427,
2007.

T. H. Falk, K. Paton, S. Power, and T. Chau, “Improving the performance
of nirs-based brain-computer interfaces in the presence of background
auditory distractions,” in 2010 IEEE International Conference on Acous-
tics, Speech and Signal Processing. 1EEE, 2010, pp. 517-520.

V. Gottemukkula and R. Derakhshani, “Classification-guided feature
selection for nirs-based bci,” in 2011 5th International IEEE/EMBS
Conference on Neural Engineering. 1EEE, 2011, pp. 72-75.

M. Saadati, J. Nelson, and H. Ayaz, “Convolutional neural network
for hybrid fnirs-eeg mental workload classification,” in International
Conference on Applied Human Factors and Ergonomics.  Springer,
2019, pp. 221-232.

U. Asgher, K. Khalil, Y. Ayaz, R. Ahmad, and M. J. Khan, “Classifica-
tion of mental workload (mwl) using support vector machines (svm)
and convolutional neural networks (cnn),” in 2020 3rd International
Conference on Computing, Mathematics and Engineering Technologies
(iCoMET). IEEE, 2020, pp. 1-6.

[19]

[20]
[21]

[22]

[23]

[24]

[25]

T. Nozawa, Y. Sasaki, K. Sakaki, R. Yokoyama, and R. Kawashima,
“Interpersonal frontopolar neural synchronization in group communica-
tion: an exploration toward fnirs hyperscanning of natural interactions,”
Neuroimage, vol. 133, pp. 484-497, 2016.

L. Kocsis, P. Herman, and A. Eke, “The modified beer-lambert law
revisited,” Physics in Medicine & Biology, vol. 51, no. 5, p. N91, 2006.
M. Miiller, “Dynamic time warping,” Information retrieval for music
and motion, pp. 69-84, 2007.

L. Zhu and L. Najafizadeh, “Dynamic time warping-based averaging
framework for functional near-infrared spectroscopy brain imaging stud-
ies,” Journal of biomedical optics, vol. 22, no. 6, p. 066011, 2017.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position,”
Pattern recognition, vol. 15, no. 6, pp. 455469, 1982.

Y. LeCun et al., “Generalization and network design strategies,” Con-
nectionism in perspective, vol. 19, pp. 143-155, 1989.



