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Abstract—Digital transcription of hand drawn schematics
offers engineers a powerful tool to quickly share and analyze
circuit ideas in a fast paced innovative environment. The current
state of the space does not offer a practical tool as of yet. Our
goal is to create a classification CNN to identify components,
and use another processing algorithm to attempt the counting of
components in the hope of generating a bill of materials. Using
a custom dataset, we trained a custom model, consisting of a
pretrained MobileNet base, and custom neural network to act
on the outputs of the MobileNet CNN to classify components.
Dropout regularization and Adam optimizer were used during
the training process. Component classification was highly success-
ful, achieving accuracy of 96%. To achieve count, two primary
algorithms were used, grid and sliding windows. However, these
algorithms failed to classify components that were part of a larger
schematic. Future work is needed to bring the classifier into a
pragmatic tool.

INTRODUCTION

Hand drawn schematics are a common graphical tool used
in industry to brainstorm electrical designs. These hand drawn
designs eventually have to be redrawn in a schematic capture
software such as Altium or KiCad. As alumni of ME 218
we are familiar with the cumbersome process of transferring
hand drawn schematics and the errors associated. Automating
this process can help reduce human transcription errors as
well as save time by removing the human from the process.
Furthermore, this transcription could be built into mobile ap-
plications that can analyze a hand drawn schematic, speeding
up development and improving brainstorming at the sketching
stage.

The first key step in digitizing a schematic is to classify
hand drawn symbols. These symbols are the graphical repre-
sentation of true components that can be analyzed via software
to test a circuit’s efficacy. Therefore, component classification
is a vital component of digital transcription.

In order to perform the classification, a neural network was
used. Given the low volume of data available, the network
was designed as a top layer to a pretrained model, MobileNet
[1] CNN, which was trained using the Image-Net [2] dataset.
We then designed a network that took the outputs of the
MobileNet and classified components. The input to our model
were 128x128 RGB images, which are first passed through the
MobileNet CNN, then passed into the custom neural net, and
output a softmax vector indicating the probability the input
image belongs to the component class.
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To reduce the scope of the problem, we focused on the
seven common components we used during our ME 218
tenure. The components were: resistors, inductors, capacitors,
MOSFETs, BJTs, diodes, and operational amplifiers. We also
included a none category to handle things like text, wires,
and power symbols. Each of the components had particular
features we were hoping the model could use in order to
classify successfully. For example, a diode has a triangular
base, and a line above the vertex of the triangle.

In order to try and use classification to do some simple
circuit analysis, we attempted to create a system that could
scan a schematic, correctly identify components, and then
produce a bill of materials. This would allow us to see if
our classifier could be put to some analysis use, bringing it
from a more theoretical exercise to a practical one.

I. RELATED WORK

Several attempts have been made in the past to classify com-
ponents in hand-drawn circuit schematic images. Bhattacharya
et al [3] and Roy et al [4] proposed image segmentation
techniques that did not involve deep learning for this process.
In their work, Bhattacharya et al [3] devised a pipeline that
comprised of image binarization, morphological closing of the
circuit diagram, removal of wires using run length smoothing
algorithm (RLSA) and localization of segmented components.
They created an in-house dataset of 60 complete circuit
diagrams with 14 classes of components. They achieved a
localization accuracy of 91.28%. Their algorithm failed when
components were drawn too close to each other and at nodal
points and corners. Roy et al [4] used a combination of
texture and shape based feature extraction along with a feature
selection algorithm called ReliefF to rank attributes. These
ranked features were then passed to different classifiers such as
K-Nearest Neighbors and Naive Bayes to identify components
in a dataset of 20 classes of individual component drawings.
They achieved an average recognition accuracy of 93.83%.
Their algorithm tended to misclassify components that were
similar in overall shape or outer boundary.

Deep learning based methods for hand-drawn circuit com-
ponent identification have also been implemented in the past.
Wang et al [5] proposed a hand-drawn electronic component
recognition method using a CNN and a softmax classifier.
A sparse auto-encoder fed into the CNN which consisted of
convolutional layers, a ReLU activation function and a pooling



layer. A hand-drawn dataset of 64 images of resistors, capaci-
tors and diodes (3 classes) was created and then augmented by
rotating the images. They were able to achieve 95% accuracy.
Dey et al [6] also proposed a CNN-based method for circuit
component recognition. They came up with a two-stage CNN
model where the first stage was used to group together similar-
looking components and the second stage was used to classify
each component group into its actual classes. The method
was evaluated on an in-house hand-drawn circuit component
dataset with 20 classes of components, and it was found to
have an accuracy of 97.33%.

Gunay et al [7] performed a survey of the three most
common methods used for hand-drawn circuit and component
classification which were namely, Support Vector Machine
(SVM), K-nearest neighbor (KNN) and CNN. They imple-
mented a CNN-based classification model on a dataset of four
different hand-drawn components and concluded that CNNs
are the best method for classifying circuit components. They
achieved an average accuracy of 93.75% with their 12-layer
CNN.

From past work, it is clear that a CNN-based approach
involving multiple stages is the most accurate method of
classifying circuit components. It is worth noting that deep
learning methods have not been used to classify and count
components in a full circuit schematic. This was only done
using image segmentation and it required a run length smooth-
ing algorithm for deleting wires between components. Due
to the lack of availability of open-source hand-drawn circuit
datasets, all previous work has involved dataset generation and
augmentation.

II. DATASET AND FEATURES

To train and test a neural network for component classi-
fication, we created our own dataset of hand-drawn circuit
components and used data augmentation techniques to increase
the number of images. We selected 7 commonly observed
components - resistors, capacitors, inductors, diodes, opera-
tional amplifiers, BJTs, MOSFETs - and drew 20 symbols of
each component with slight adjustments to account for the
variability in different people’s drawings. We also drew 20
symbols that did not represent any of these but are commonly
seen on circuit schematics such as batteries, power and ground,
and straight lines representing wires. All of these images
were drawn with a black pen on white paper to reduce
preprocessing steps for grayscaling. Blank images of a plain
white background were also included in this none class as
plain white space does not represent any circuit component.
For each class of components, we also added an image of
a computer-generated schematic symbol. All images were
resized to 120x160 pixels. In total, we had 168 raw images
of components that were augmented by rotating seven times
in increments of 45 degrees, passing through a Gaussian blur
filter and an average blur filter, and skewing with an affine
transformation to create 1760 images in total. The dataset
was then divided into 80% training (1408 images), and 20%
test (352 images). The scikit-learn [8] library was used for

splitting the data and each class in both the training and test
sets had roughly equal numbers of images. Figure 1 shows
some sample images from the raw dataset.
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Fig. 1. Example Component Images in Dataset
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For the second part of the project, the trained neural network
was used to convolve over an image of a full circuit to identify
components in the image and determine how many instances
of each component are present. To create the dataset for this
part, we collected our own and our friends’ hand-drawn full
circuit drawings. We limited these drawings to the ones made
for the ME 218, Mechatronics, classes at Stanford to ensure all
components in the drawings match with the components the
network has trained on. A total of 15 images were generated
by hand-drawing. No augmentation was performed and the
images were not processed to have the same size. This is
because we wanted our algorithm to be robust enough to work
with full circuit schematics of any size. Figure 2 shows a
sample full circuit image from this dataset.
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Fig. 2. Example Full Circuit Image in Dataset

III. METHODS
A. Modeling

The model used to perform the classification is naturally
divided into two parts, a pretrained MobileNet CNN, the base
model, and a custom neural network whose input is the output
of the MobileNet model, the top model. These models are
combined to create an end to end model that accepts a 128x128
RGB image of a hand drawn component and then outputs the
classification probabilities. RGB was used in order for us to
leverage the pretrained models.

All model construction was implemented using the Tensor-
Flow library [9]. We accessed the MobileNet model through



the keras application class of TensorFlow, and configured the
model to omit the top classification layer, since we attached
our own model instead. We selected the weights that result
from training MobileNet on the ImageNet dataset. We selected
average pooling between the convolution layers, in hopes this
lead to weights that did not focus on edges or other sharp
features. This part is solely designed to leverage a pretrained
model for feature extraction. The top model, which training
is performed on, has one hidden layer of 512 neurons with a
hyperbolic tangent activation, and an 8 neuron output layer
with a softmax activation. The hidden layer adds enough
model complexity to help classify the MobileNet outputs. The
hidden layer provided the model more weights to train, and
thus helps with performance. The neuron count of 512 was
chosen to halve the output from the fully connected 1024 layer
on the output of the MobileNet. We chose to use hyperbolic
tangent given its normalizing properties. While S-shaped like
sigmoid, tanh is centered around O, thus the mean of the
outputs from the hidden layer are more likely to center around
0. Furthermore, during training, strong negative inputs will
result in a -1 output, not O like sigmoid, allowing for faster
weight updates, preventing the network from getting stuck
during training. Given the use of hyperbolic tangent, we used
Xavier initialization [10] to prevent instability from weight
initialization.

The final output layer provides the probabilistic categoriza-
tion of the features. The layer consists of 8 neurons, one per
class, with a softmax activation. The softmax activation allows
the model to output the probability that the component belongs
to each class, in other words:
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where 7; represents the components of the vector outputted
by the layer.

B. Training and Optimization

We trained the top model using the built in fit function
supplied by TensorFlow [9]. As state, we only performed
training on the top model. This was achieved by first passing
the dataset images through the base model, and using those
outputs to train the top model. We chose to use an Adam
optimizer with a learning rate of 0.001, with the default 5 and
e values. Given we were using a softmax output, we opted for
a categorical cross entropy loss function to optimize around.
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Equation 2 is written in its simplified version given the
true y value is a one-hot vector, thus the sum reduces to
a singe component when y = 7. As mentioned before, we
used Adam to perform the optimizations, letting TensorFlow
perform the process for us. We chose to use Adam because
of its benefits when dealing with sparse and noisy gradients.
Since Adam uses momentum to update the learning rate per
parameter, customized learning rate can be used, allowing all

parameters to update at a rate that is consistent with every
other parameter, unlike SGD which uses the same learning rate
for all parameters, which can cause training to be longer as
some parameters update quicker than others [11]. Furthermore,
Adam performs better on noisy or sparse gradients. Given our
small dataset, we thought this might lead to a weak training
signal, and thus concluded Adam would be the better overall
choice.

Due to the small dataset, we were concerned the model
would overfit. We thus chose to add a 20% dropout layer on
the hidden layer. This dropout layer effectively set the weights
of 20% of the nodes to 0, removing them from the calculation.
By dropping out randomly, each train step will see a slightly
different layer, introducing noise into the training process.
The dropout rate was a hyperparameter that was tuned during
development.

IV. EXPERIMENTS/RESULTS/DISCUSSION
A. Success Metrics

The success of the neural network was determined by its
accuracy. Accuracy was defined as the proportion of correctly
classified images to the total number of images classified. An
image is correctly classified if the predicted label matches the
predefined label for that image. Equation 3 below mathemat-
ically defines accuracy as the number of examples where the
predicted label matches the true label over all examples.
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In the first part of the project, images of individual components
were passed into the CNN for classification. Accuracy was
based on prediction of labels for each component image. In
the second part of the project, the trained CNN was convolved
over a circuit schematic that was divided into smaller images
either with a fixed grid or a sliding window. In this case,
accuracy was measured by the prediction of the CNN on each
smaller image. Due to the spacing of components in the circuit
schematics and the grid size selected, the smaller images were
divided in such a way that not more than one component was
present in each small image.

B. Hyperparameter Tuning

There were several hyperparameters that we tuned dur-
ing experimentation. The list includes: learning rate, regu-
larization, batch size, base model type, neuron number, and
activation functions. Most were selected based on how the
model performed on the test set with said values. Others were
based on the recommended values found in the literature or
TensorFlow documentation. If the model performed well with
these starting values, they were used.

The training parameters we experimented with were learn-
ing rate, batch size, and epoch number. We began with a
learning rate of 0.001 and the default beta and epsilon values
for the Adam Optimizer. These were the recommended settings
from the literature [11]. We experimented with the learning
rate to see how increasing or decreasing would affect training.



Increasing made training highly unstable, with the loss and
accuracy varying widely between epochs. Decreasing made no
significant difference in final trained accuracy and just slowed
the process down. Sizing the batches was also tuned. We found
using 64 batches and running enough steps to cover the dataset
per epoch worked the best. The smaller batches provided a
good estimate, and helped make training faster by applying
more steps per epoch with the smaller batch. Epoch count
was determined experimentally as well. We found 10 epochs
worked the best.

The next, and arguably most critical, parameter was the base
model selection. We started with Inception V3 as it provided
the best overall performance as outlined in the TensorFlow
documentation [9]. While the model trained well with this
base, but it tested at roughly 60% accuracy on the test
set. After reviewing the literature, we found the MobileNet
model may suit our needs better [1]. Given there were fewer
parameters and convolution layers, we felt perhaps this would
not overfit as much as Inception V3, giving our model more
flexibility during training. After switching to this model, we
saw a test accuracy of 86%. This was a dramatic improvement.

C. Regularization

Given the small size of our dataset, overfitting was a major
concern. Preliminary testing showed our model training to near
100% but the test was not breaking 90%. We thus decided to
experiment with regularization to see if we could improve our
test accuracy. Table I summarizes the accuracy results. We first
assumed a Gaussian prior across our weights, given we had
a large network layer of 512 neurons. Thus, we started with
L-2 normalization and this did help. However, training was
more difficult and results were not consistent. We then simply
tried stopping the training early. This also helped, but did not
perform as well as L-2. We then took a different approach and
tried to use dropout instead. We started with the 20% default,
and that worked well. We then proceeded to decrease the rate
to 10%, but discovered this worsened performance.

TABLE I
REGULARIZATION TECHNIQUES
Regularization Technique | Accuracy

L2-Norm 93.521%
10% Dropout 94.92%
20% Dropout 96.34%
Early Stopping 92.13%

D. Results and Discussion

Training loss and accuracy of the CNN on the individ-
ual component images was recorded over 15 epochs and is
shown in Figure 3. As training takes place, the loss decreases
marginally and flattens out after about 3 epochs, and the
accuracy of classification increases from 96% initially to
99.99% after 15 epochs. The accuracy curve also flattens out
at about 3 epochs.

Using the optimally tuned hyperparameters, our model
achieved a detection accuracy of 96% on the test set. This is
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Fig. 3. Training Loss and Accuracy

comparable to the experiments run by Dey et al [6]. Figure 4
shows the confusion results. In general the model did very
well, and in multiple classes, suffered no confusion. The
classes that fared the best were capacitors, MOSFETs, and
none. The class that fared the worst was diodes, getting con-
fused for MOSFETSs and Op-Amps. All three components have
a major triangular feature which would explain the confusion.
Resistors and inductors were also confused for each other.
These components have similar shape, especially when hand
drawn, explaining the confusion. The model confused some
BJTs for MOSFETs, predicting the latter more accurately.
This could be explained by the increased complexity of the
MOSFET symbols, allowing for better feature recognition by
the model.

Confusion Matrix on Test Set
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Fig. 4. Confusion Matrix

Grid Method: The model was used to scan over full circuit
schematics using two different techniques. The first technique,
the grid method, involved creating an grid on top of the
schematic images and then classifying each grid pane, which
was designed to be 128x128, separately using the model. The



circuit shown in Figure 5 was divided into smaller images
using the grid method and classified with the CNN to generate
the heatmap shown in Figure 6. The heatmap shows probabili-
ties assigned by the CNN to each rectangle of the grid. In this
case, it can be seen that the CNN predicted capacitor with a
high probably for the rectangle containing the right hand side
capacitor, but failed to identify the capacitor on the left side of
the circuit. On the other hand, the CNN classified all the white
space in the image as none with very high probability, but
seemed to fail around the power and ground symbols. Power
and ground symbols were also included in the training and
test sets for the none class.
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Fig. 5. Example Circuit
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Fig. 6. Heatmap for Grid Method

Sliding Window Method: The second technique, sliding
windows, classified the various components in the circuit by
moving a window of fixed size through the rows and columns
of the full circuit schematic. Figure 7 shows the results of
classification using the sliding window method on the circuit
in Figure 5. This method was unable to detect the capacitors
in the circuit as the heatmap shows the very low probabilities
with which capacitors were predicted on the image. However,
this method performed better in classifying the white spaces
in the circuit as none which is illustrated by the red colored
pixels all around the edges of the heatmap.

The sliding window approach was very time-consuming and
did not offer any improvement in accuracy as compared to the
grid method. As small windows were created and slid over
each full circuit schematic, many windows were created where
only a small part of the component was visible. Due to this,
the accuracy of this method was lower than that of the grid
method as it was more difficult to classify the small parts of
the components visible in the windows.

The grid approach was computationally faster than the
sliding window approach and generally gave more accurate
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Fig. 7. Heatmap for Window Method

results. However, the accuracy of this approach was also poor.
Since the none class contained power symbols, wires, blank
space and nodes, this was the most common guess for most of
the schematic, and many times components were misclassified
as none objects.

V. CONCLUSION

This paper proposed a method for identifying circuit com-
ponents in hand-drawn schematics using a neural network built
on top of the MobileNet CNN. A dataset of 1760 images
of individual circuit components was generated by hand-
drawing 8 classes of circuit components and then performing
various methods of data augmentation. Using 20% dropout
regularization, the CNN was able to achieve 96% accuracy in
classifying the test set of individual component images. This
CNN was then used to classify components in hand-drawn
circuit schematics using two different approaches - grid and
sliding windows. The grid method performed marginally better
than the sliding windows method and it was computationally
faster.

Given more time, the critical issue we want to explore is
trying component recognition in the presence of wires. As dis-
cussed, both grid and sliding windows performed poorly, even
though the classifier worked well on individual components.
In order to devise a practical use of the classifier, this needs
to be explored further. Perhaps the fist step would be to create
an algorithm that can scan a full schematic and recognize
any component as a feature, extract the component, and run
it through the classifier. With more computational resources
and data, we could have designed our own custom CNN and
trained it to extract features that are essential to schematic
component. We would also like to expand the component set
to account for a larger variety of digital and analog symbols
as well.
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