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Abstract

There are growing concerns about the generalizability and interpretability of machine learning classifiers on
brain imaging data. Prior studies attempted to classify psychiatric disorders, yet the datasets in these studies
have small sample sizes, with most of them having fewer than 100 individuals. In this study, I use machine
learning approaches (logistic regression, decision trees, and neural networks) to predict depression using brain
imaging variables on a dataset extracted from the UK Biobank with 5,002 individuals. This is currently larger
than any brain imaging datasets of any psychiatric disorders in the literature. The best classification result is
obtained with LightGBM, with an area under precision-recall curve (AUPRC) of 0.385.

1 Introduction and related work

Major depressive disorder (MDD), commonly known as de-
pression, is a psychiatric disorder with a 20.6% life time
prevalence (Hasin et al., 2018). On an individual level, it can
significantly decrease a person’s quality of life. On a societal
level, it costs tens of billions of dollars each year in the U.S.
alone (P. S. Wang et al., 2003). Despite its huge individual
and societal impact, the biological mechanisms underlying
MDD are still largely unknown.

Our poor understanding of MDD leaves clinicians with no
choice but to rely on subjective diagnostic measures. Psychi-
atrists base their diagnosis on the Diagnostic and Statistical
Manual of Mental Disorders-5 (DSM-5), yet the diagnostic
criteria listed in DSM-5 are often criticized for being arbi-
trary in nature (Association et al., 2013; Chmielewski et al.,
2015). A more accurate, objective diagnosis is needed for
psychiatrists to prescribe appropriate medications.

A machine learning approach to predict MDD with biological
data may improve our understanding of the biological basis
of depression and make diagnosis more objective. Previous
medical research has shown that some neuroimaging abnor-
malities may be related to depression (Zhuo et al., 2019). It
is thus promising to use magnetic resonance imaging (MRI)
data to predict whether a person has MDD.

Plenty of studies have tried to predict different psychiatric dis-
orders using processed MRI data, where biologically mean-
ingful variables are extracted from raw MRI images. In the
review papers by Du et al. (2018), Gao et al. (2018), Patel
et al. (2016), and Wolfers et al. (2015), support vector ma-
chine (SVM) is the most widely used method because it can
be fairly resistant to overfitting when we input high dimen-
sional data with brain attributes. Prior studies also often use
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methods like logistic regression, random forest, and neural
networks (Chauhan & Choi, 2020; Hu et al., 2020; Plitt et al.,
2015). Mutliple studies in the aforementioned review papers
report to have achieved some accuracy higher than 90%.

However, we should cautiously interpret these results as they
might not generalize well to the general clinical population.
Since recruiting participants can be challenging, prior studies
are conducted on small datasets, with the majority of them
having fewer than 100 individuals (Andrews et al., 2018;
Chauhan & Choi, 2020; Gao et al., 2018; Price et al., 2014,
X. Wang et al., 2017; Wolfers et al., 2015). With small sample
sizes, these studies report cross-validation or leave-one-out
cross-validation accuracy in place of hold-out test set accu-
racy. Lanka et al. (2020) found that the nature of the small
sample sizes and the use of cross-validation accuracy may
have significantly inflated the results of prior studies. The
performance of the models in prior studies might be close to
random on a hold-out test set.

In this study, I curate a brain imaging dataset with 5,002 in-
dividuals and 2,331 processed MRI variables. This is larger
than any exisiting neuroimaging dataset of some psychiatric
disorders in the literature. I use these brain imaging attributes
as input to predict whether an individual has depression with
logistic regression, two decision tree methods (random forest
and LightGBM), and two neural networks. As the primary
goal of this project is to improve our understanding of the
biological basis of depression, I use SHapley Additive exPla-
nations (SHAP), an estimation of shapley values to visualize
and help us interpret how different brain imaging features
contribute to the best model’s prediction.



2 Dataset

2.1 Dataset Cleanup

The dataset used in this study is extracted from UK Biobank.
UK Biobank is a database with extensive biological samples
and medical information from over 500,000 participants aged
40-69 years (Sudlow et al., 2015).

In this huge database, I first handpick brain imaging vari-
ables out and combine files in various formats. I average
over duplicated variables if it makes biological sense to do
so or when it is appropriate to do so given how the data is
collected. Otherwise, individuals that have other duplicated
or missing variables are removed. I also change the coding of
some variables, such as depression status, as they were origi-
nally coded to fit other unrelated variables. The data is then
randomly split into train:validation:test = 70% : 15% : 15%
with same ratios of cases and controls in each subset.

2.2 Dataset characteristics

The final curated dataset contains 5,002 individuals, of
which 1,421 have depression and 3,581 does not. Each
individual has 2,331 features. There are four types of fea-
tures—participant backgrounds, processed structural MRI,
processed diffusion MRI, and processed resting functional
MRI attributes.

Participant background features include age, sex, BMI, and a
metric of socioeconomic status. Structural MRI is an imaging
technique that examines the anatomy of the brain. Example
variables include volume of grey matter in amygdala. Diffu-
sion MRI captures the mapping of the diffusion process of
molecules, which can then be used to infer the structure of
nerve tracts. Lastly, functional connectivity values derived
from resting functional MRI accounts for the organization
and relationship among spatially separated brain regions.

Figure 1: An example fMRI brain map from UK Biobank.

2.3 Dimensionality Reduction

As the dataset used here has a large feature space, I used
dimensionality reduction techniques to visualize the dataset
and create two lower-dimensional datasets.

2.3.1 t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is an
unsupervised, nonlinear dimensionality reduction technique.
t-SNE algorithm works by first constructing a probability dis-
tribution in a high dimensional space such that similar points

are assigned higher probability and vice versa for dissimilar
points. This distribution is built according to a Gaussian
distribution that can be manipulated through the variable
"perplexity" in the implementation. It similarly constructs
a distribution in a lower dimensional space using Student
t-distribution. The algorithm then uses gradient descent to
minimize Kullback-Leibler divergence, which measures the
similarity of the two probability distributions.

Figure 2a shows the result of t-SNE. Even with a variety of
perplexity and numbers of iterations, t-SNE cannot cluster
datapoints into different depression outcomes, suggesting
that this could be a challenging classification task.

232 PCA

Principal component analysis (PCA) is another dimension-
ality reduction method. In PCA, principal components are
constructed such that the first component accounts for the
largest possible variance. The subsequent principal compo-
nents will be the ones that are orthogonal to previous ones
and account for the largest possible remaining variance. PCA
works by first standardizing all variables to a comparable
scale. We can then calculate the covariance matrix and its
eigenvectors and eigenvalues. After sorting the eigenvec-
tors by their eigenvalues in descending order, the principal
components by variance expalained in descending order will
point to the direction that the associated eigenvectors do.

We can see in Figure 2b that, under the first two components,
datapoints of different labels are clustered together. Notice
that there are outliers in the top left and lower right corners
even after data standardization.

To balance the tradeoff between the number of compo-
nents and retained information in our two lower-dimensional
dataset, I utilized Figure 2c to create a dataset consisting of
the first 500 principal components, which explains 71.8% of
the variance of original data, and a dataset with the first 1,000
components, which explains 90.3% of the original variance.

3 Methods and experiments

Due to the space constraint, I will focus on presenting the
experiments conducted on the original dataset without dimen-
sionality reduction. However, similar hyperparameter tuning
experiments are conducted on the two lower-dimensional
datasets as well.

3.1 Metrics

Due to the class imbalance in our data (the number of samples
for each label is different), accuracy might be misinterpreted.
Precision and recall may alter with the threshold that de-
termines if a class is positive or not. Therefore, I use area
under precision-recall curve (AUPRC) as my main metric,
along with area under receiver operating characteristic curve
(AUROC). Recall and precision can still be inferred from the
precision-recall curve presented in the results section.

A receiver operating characteristic curve is a plot of true pos-
itive rate (or recall) versus false positive rate. The quantities
used in AUROC and AUPRC are defined as follows:
TP TP
Recall =
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Figure 2: Dimensionality reduction on our dataset.

FP
FP+TN
where T'P is true positive, F'P is false positive, T'N is true
negative, and F'N is false negative.

Note that the baseline for AUROC is 0.5, and the baseline
for AUPRC is 0.284. This is because an average random
classifier will have a horizontal precision-recall curve with
precision being the fraction of positive examples in the data.

False positive rate =

3.2 Logistic regression

Method I choose logistic regression as my baseline model
because it is one of the simplest model for a classification
task. It aims to minimize the following loss function

J(0) = Al

= 3" (i 10g(ho(a)) + wo(1 — yV) log(1 — he(z")))
1=1
where z(%) is the variable vector of the i-th individual, 7 is
the number of examples, 6 is the coefficient vector, ||0]|,
is the LP norm of theta, A is the regularization strength,
ho(z®) = and y(") = 1 if the i-th individual
has depression and 0 otherwise. When class weights are used
to account for class imbalance,
total number of individuals
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Otherwise, wg = wy = 1.

Experiments The effects of regularization and class
weights on AUPRC are shown in Table 1. Note that the
AUPRC values under different experimental conditions often
differ by less than 0.001.

Table 1: Validation set AUPRC under different logistic regres-
sion settings on the original dataset. For each regularization
setting, the highest AUPRC of differnt regularization strength
is reported.

Class weight

Regularization Not used Used
None 0.326 0.327

) 0.327 0327

12 0326 0.327

3.3 Decision Tree-based Methods

3.3.1 Random forest

Method Random forest ensembles multiple decision trees
trained in parallel with bagging (Breiman, 2001). Bagging
allows individual trees to be trained on subsets of training
data that are randomly sampled with replacement. For a tree,
when deciding which feature to split on, we pick the one that
decreases Gini impurity the most. Gini impurity is given by

Ia(p) = Zpi(l —pi)

where p; is the probability of an item with label ¢ being
randomly chosen from a set and K is the number of labels.
Bagging, along with that each tree is trained on a random
subset of features, ensures that each tree is unique. The aggre-
gation of unique trees reduces the variance of the algorithm,
making random forest more robust to noise in the training
data than a decision tree is.

Experiments To prevent overfitting, I experiment with dif-
ferent tree attributes, including maximum tree depth, maxi-
mum number of leaves, and minimum number of samples in
a leaf. Maximum proportion of samples and features used are
also tested. Only part of the experiments are shown in Figure
3a due to the limit of space. Our best performing model on
the original dataset has 100 trees in the forest, a maximum
tree depth of 7, at least 16 samples in each leaf, and at most
150 leaves in each tree. At most 50% of features and 70% of
instances are used to train each tree. Class weights are used
to account for class imbalance.

332 LightGBM

Method Light Gradient Boosted Machine, or LightGBM,
is a fast-to-train, state-of-the-art algorithm in numerous clas-
sification tasks on tabular data (Ke et al., 2017). LightGBM
is a gradient boosting decision tree (GBDT) algorithm, which
combines weak learners, or decision trees that perform at
least slightly better than random, into a strong model itera-

tively. Mathematically, our goal is to find a strong model F'

that minimizes some loss function L(y, F'(z)). Let F,, be
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Figure 3: Parameter tuning for decision trees and neural networks. Validation set AUPRC on the original dataset is presented.

the combined model we have at the m-th iteration. We first
train a weak learner h,,,41 () that is closest to the gradient

3 Ve LY, Fn(a®)).
i=1

We then get F' for our next step

Fri1(x) = Fo(2) + Ymt1hme1(z)  where

Ym1 = argmin, ¥ L(y?, Fp(z?) + yhm1(z)).
=1

In addition to GBDT, LightGBM incorporates special tech-
niques to speed up the training. Two key techniques are
gradient-based one-sided sampling (GOSS) and exclusive
feature bundling (EFB). Instead of using the full training set
to train each tree, GOSS focuses on using training instances
with large gradients. EFB, on the other hand, reduces the
number of features by merging mutually exclusive features.

Experiments Similar to random forest, I experiment with
tree structures, proportion of features used in each tree, and
bagging parameters (shown in Figure 3b) to prevent overfit-
ting. On the original dataset, the best model has 200 boosting
rounds and a 0.03 learning rate. For every 2 iterations, 50%
of samples are bagged. Each weak learner is trained with
50% of features. Each tree has a maximum depth of 3, at
least 128 samples in each leaf, and at most 30 leaves. Class
weights are used to address class imbalance.

3.4 Neural networks

A 2-layer and a 4-layer neural network are implemented here.
Both networks are trained with a batch size of 32 and a learn-
ing rate of 0.001 with Adam optimizer. Weighted binary
cross entropy loss is used to account for class imbalance.
Data is first normalized prior to feeding into the networks.

In the 2-layer network, there is a dense layer of varying units
with ReLU, followed by a prediction layer with sigmoid
activation. The effects of number of input layer units are cap-
tured in Table 2. The 4-layer network begins with a 128-unit
dense layer with ReLU, followed by two 256-unit dense lay-
ers with ReLU and a prediction layer with sigmoid activation.

I experiment two methods of regularization—L?2 regulariza-
tion on weights and dropout layers after each dense layer
(Figure 3c). On the original dataset, the best 2-layer network
uses a 0.01 L2 regularization strength and a 0.5 dropout rate,

whereas the best 4-layer one has a 0.025 L2 regularization
coefficient and a 0.1 dropout rate.

Table 2: 2-layer network: validation set AUPRC with differ-
ent input layer units on the original dataset.

Input layer units| 128 256 512 1024
AUPRC  |0.455 0.436 0.433 0.430

3.5 SHAP

For the best model, I use model-agnostic SHapley Additive
exPlanations (SHAP) to explain how features contribute to
a model’s prediction (Lundberg & Lee, 2017). SHAP com-
putes Shapley values from coalitional game theory by fairly
distributing prediction probability among all features. An
explanation model g satisfies the following equation

M
9(2) = o+ >_ 52

j=1
where M is the number of features, ¢; € R is the Shapley
value for feature j and z € {0, 1} is the coalition vector
that has 1 as an entry iff a feature is present. Shapley value
represents the expected marginal contribution of each feature
after all possible combinations of them have been considered.

4 Results and Discussion

The results of various models are presented in Figure 4a-c.

Logistic Regression performs poorly on the original dataset,
which is expected as it is a relatively simple model. How-
ever, on the other two dataset, it improved significantly and
achieved an AUPRC of 0.368, outperforming decision trees.

Decision Trees perform well on the original dataset. Light-
GBM has the highest performance (AUPRC = 0.385 and
AUROC = 0.597). However, decision trees suffer a drop of
performance when trained on the other two datasets, where
LightGBM specifically is a lot more prone to overfitting.

Neural Networks, specifically the two-layer one, have the
highest performance on the datasets with 500 and 1000 prin-
cipal components. However, these models perform worse
than decision trees on the original dataset. The 4-layer neural
network is, in general, more prone to overfitting and performs
worse than the two-layer one on test sets.
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LR denotes logistic regression, RF denotes random forest, LGB denotes
LightGBM, NN-2 denotes 2-layer neural network, and NN-4 denotes 4-layer
neural network. Note that 0.5 is the baseline for AUROC and 0.284, the
fraction of positive instances, is the baseline for AUPRC.
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Figure 4: Summary of results on depression prediction.

Figure 4d shows that although there are quite a few brain
imaging variables that are important in LightGBM’s predic-
tion, sex and BMI are the most influential features. This
is not expected yet consistent with that depression is more
prevalent in women (blue in the figure) and individuals with
higher BMI (red in the figure) (Speed et al., 2019).

The performance of our models are lower than expected.
Some hypotheses behind the low performance are as follows:

* Even though this dataset contains more individuals than
the ones in the literature, the dataset size is still small. This
can make algorithms here underpowered.

» There might be other algorithms, such as other neural net-
works, that can perform better than the ones we used here.

« It is also likely that the features in this dataset alone are
not sufficient to model depression. Depression involves nu-
merous biological, sociological, and environmental factors,
which is the reason why scientists understand them poorly.
By having almost all features here being brain imaging
data, we might have lost some critical information. More-
over, the depression variable we use here, as mentioned in

the introduction section, are based on subjective criteria
that scientists still debate about. The lack of consensus in
diagnosis might have caused our depression label to be not
entirely accurate (Du et al., 2018).

5 Conclusion

On our brain imaging dataset of 5,002 individuals and 2,331
features, we achieve a somewhat discouraging but better-than-
random result. The implication of this study is discussed,
with a goal of improving future work of depression diagnosis.
A larger dataset with more individuals and more biological
and environmental variables included may critically benefit
this line of work a lot. Even with limited data, I would like
to conduct the following experiments in the future:

» Exploring alternative feature selection methods (other than
PCA), such as forward/backward feature selection.

» Implementing other algorithms, such as support vector ma-
chine, as well as ensembling multiple machine learning
methods to combine the advantages of different algorithms.
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