GAN-Based Image Data Augmentation
Nathan Hu
zixia314@stanford.edu
David Liu
dliud@stanford.edu

Introduction
- Generative Adversarial Networks (GANs) are powerful generative models introduced by (Goodfellow et al.) [7] and can be trained on as little data as a single image [5].
- Lack of data makes ML hard -- data augmentation
- Prior work:
 - “Translating” images [3]
 - Generating numeric data [1]
- Motivation: Explore using these super powerful generative models to augment more complex data sets
- Classic Problem: Image classification of numbers in the MNIST database.

Direct Data Augmentation
- Trained the classifier on purely GAN-generated data for GANs of various sizes
- Pure synthetic data comparable to pure real data in training classifier

<table>
<thead>
<tr>
<th>Train Size</th>
<th>α = 1</th>
<th>α = 2</th>
<th>α = 4</th>
<th>α = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.641</td>
<td>0.422</td>
<td>0.615</td>
<td>0.709</td>
</tr>
<tr>
<td>500</td>
<td>0.648</td>
<td>0.611</td>
<td>0.741</td>
<td>0.763</td>
</tr>
<tr>
<td>1000</td>
<td>0.683</td>
<td>0.670</td>
<td>0.694</td>
<td>0.756</td>
</tr>
<tr>
<td>2000</td>
<td>0.788</td>
<td>0.687</td>
<td>0.680</td>
<td>0.793</td>
</tr>
</tbody>
</table>

Recursive GAN Training
- Repeatedly use GANs to augment the dataset of images then used to train more GANs
- Classifier performance shows oscillating accuracies before long-term drop in performance

Model Architectures
- GAN Loss is like a Two-Player Game:
 \[
 \min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_z(z)} \left[\log (1 - D(G(z))) \right]
 \]
- The classifier used cross entropy loss with regularization

Summary and Future Work
- Summary:
 - We achieved comparable performance when training only on GAN-generated data and significant performance increases when using GAN-generated data and real data.
 - Adding GAN generated data can be more beneficial than adding more original data, and leads to more stability in training
 - Recursive training of GANs failed to yield performance increase
- Future work:
 - More fine tuning of hyperparameters when training GANs
 - Exploring other classifier architectures and generative models
 - More complex image classification tasks, ex. CIFAR 100

References:

Future work:
- More complex image classification tasks, ex. CIFAR 100

Train Size
- RecTrain Accuracies
- 250: 0.641 0.422 0.615 0.709 0.696
- 500: 0.648 0.611 0.741 0.763 0.710
- 1000: 0.683 0.670 0.694 0.756 0.738
- 2000: 0.788 0.687 0.680 0.793 0.781

Model Architectures
- GAN Architecture
- Generator and Discriminator
- The classifier used cross entropy loss with regularization

Figure:
- 500 Real, 500 Synthetic
Introduction

- Generative Adversarial Networks (GANs) are powerful generative models introduced by (Goodfellow et al.) [7] and can be trained on as little data as a single image [5].

- Lack of data makes ML hard -- data augmentation

- Prior work:
 - “Translating” images [3]
 - Generating numeric data [1]

- Motivation: Explore using these super powerful generative models to augment more complex data sets

- Classic Problem: Image classification of numbers in the MNIST database.
UNSURE IF BAD MODEL
OR INSUFFICIENT DATA
Enlarge your Dataset
Introduction

- Generative Adversarial Networks (GANs) are powerful generative models introduced by Goodfellow et al. [7] and can be trained on as little data as a single image [5].

- Lack of data makes ML hard -- data augmentation

- Prior work:
 - “Translating“ images [3]
 - Generating numeric data [1]

- Motivation: Explore using these super powerful generative models to augment more complex data sets

- Classic Problem: Image classification of numbers in the MNIST database.
GAN Loss is like a Two-Player Game:

$$\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} \log D(x) + \mathbb{E}_{z \sim p_z(z)} \log(1 - D(G(z)))$$

The classifier used cross entropy loss with regularization.
Direct Data Augmentation

- Trained the classifier on purely GAN-generated data for GANs of various sizes.

- Pure synthetic data comparable to pure real data in training classifier.

<table>
<thead>
<tr>
<th>Train Size</th>
<th>Baseline</th>
<th>$\alpha = 1$</th>
<th>$\alpha = 2$</th>
<th>$\alpha = 4$</th>
<th>$\alpha = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.641</td>
<td>0.422</td>
<td>0.615</td>
<td>0.709</td>
<td>0.698</td>
</tr>
<tr>
<td>500</td>
<td>0.648</td>
<td>0.611</td>
<td>0.741</td>
<td>0.763</td>
<td>0.710</td>
</tr>
<tr>
<td>1000</td>
<td>0.683</td>
<td>0.670</td>
<td>0.694</td>
<td>0.756</td>
<td>0.738</td>
</tr>
<tr>
<td>2000</td>
<td>0.788</td>
<td>0.687</td>
<td>0.680</td>
<td>0.793</td>
<td>0.781</td>
</tr>
</tbody>
</table>
- Trained classifier on mixed synthetic data + real data in various ratios
- Mixed data outdoes pure real data; more noticeable for small datasets
- Unstable training losses suggest higher variance in real data
Recursive GAN Training

- Repeatedly use GANs to augment the dataset of images then used to train more GANs
- Classifier performance shows oscillating accuracies before long-term drop in performance

![Graph showing RecTrain Accuracies](image)
Summary and Future Work

- **Summary:**
 - We achieved comparable performance when training only on GAN-generated data and significant performance increases when using GAN-generated data and real data.
 - Adding GAN generated data can be more beneficial than adding more original data, and leads to more stability in training.
 - Recursive training of GANs failed to yield performance increase.

- **Future work:**
 - More fine tuning of hyperparameters when training GANs.
 - Exploring other classifier architectures and generative models.
 - More complex image classification tasks, ex. CIFAR 100.

References:

GAN-Based Image Data Augmentation

Nathan Hu
zixia314@stanford.edu

David Liu
dliud@stanford.edu

Introduction

• Generative Adversarial Networks (GANs) are powerful generative models introduced by Goodfellow et al. [7] and can be trained on as little data as a single image [5].
• Lack of data makes ML hard -- data augmentation
• Prior work:
 ○ “Translating” images [3]
 ○ Generating numeric data [1]
• Motivation: Explore using these super powerful generative models to augment more complex data sets
• Classic Problem: Image classification of numbers in the MNIST database.

Direct Data Augmentation

• Trained the classifier on purely GAN-generated data for GANs of various sizes
• Pure synthetic data comparable to pure real data in training classifier

Table

<table>
<thead>
<tr>
<th>Train Size</th>
<th>Baseline</th>
<th>$\alpha = 1$</th>
<th>$\alpha = 2$</th>
<th>$\alpha = 4$</th>
<th>$\alpha = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.641</td>
<td>0.422</td>
<td>0.615</td>
<td>0.799</td>
<td>0.696</td>
</tr>
<tr>
<td>500</td>
<td>0.648</td>
<td>0.611</td>
<td>0.741</td>
<td>0.763</td>
<td>0.710</td>
</tr>
<tr>
<td>1000</td>
<td>0.683</td>
<td>0.670</td>
<td>0.694</td>
<td>0.756</td>
<td>0.758</td>
</tr>
<tr>
<td>2000</td>
<td>0.708</td>
<td>0.687</td>
<td>0.680</td>
<td>0.793</td>
<td>0.781</td>
</tr>
</tbody>
</table>

Recursive GAN Training

• Repeatedly use GANs to augment the dataset of images then used to train more GANs
• Classifier performance shows oscillating accuracies before long-term drop in performance

Figure

- RecTrain Accuracies

Summary and Future Work

• Summary:
 ○ We achieved comparable performance when training only on GAN-generated data and significant performance increases when using GAN-generated data and real data.
 ○ Adding GAN generated data can be more beneficial than adding more original data, and leads to more stability in training
 ○ Recursive training of GANs failed to yield performance increase
• Future work:
 ○ More fine tuning of hyperparameters when training GANs
 ○ Exploring other classifier architectures and generative models
 ○ More complex image classification tasks, ex. CIFAR 100

Model Architectures

GAN Loss is like a Two-Player Game:

\[
\max \limits_{D,G} \mathbb{E}_{x \sim p_{data}} \log D(x) + \mathbb{E}_{z \sim p_z} \log (1 - D(G(z)))
\]

The classifier used cross entropy loss with regularization

Figure

- GAN Architecture
- Classifier

Recursive GAN Training

Figure

- RecTrain Accuracies

Summary and Future Work

• Future work:
 ○ More fine tuning of hyperparameters when training GANs
 ○ Exploring other classifier architectures and generative models
 ○ More complex image classification tasks, ex. CIFAR 100

Figure

- Model Architectures
- GAN Loss is like a Two-Player Game:

References: