Popular Truth

Michael Sun
May 2019

1 Introduction

In this project I investigate different approaches to predicting the popularity
of a news article, given article metadata and content. Apart from applying
supervised learning on it, I am interested in which features, either those prepared
by the dataset creator or additional ones I engineer, carry the most predictive
power.

In a 2015 CS229 project, He Ren and Quan Yang used a random forest to
achieve 69% accuracy in classifying articles as either popular (> 1400) shares or
not. I aim to outshine the baseline set by my predecessors by engineering new
features on the extracted article content itself, combining what I’ve learned in
(CS229 and previous NLP techniques I'm familiar with.

2 Collecting News

I obtained the dataset of article urls and metadata from UCI’s Online News
Popularity Dataset. To create a robust classifier, I used beautifulsoup to scrape
all the articles of its author and content.

3 Taking in the News

3.1 Shares distribution

The overall shares distribution is a skewed Gaussian or a power law curve.
There wouldn’t be much point in a classification task if the distribution was
just Gaussian noise, but like other forms of media news articles produce net-
work effects that spikes no. shares. Admittedly, this power law may be more
pronounced in the more sensationalist websites of today, but nonetheless this
motivates the distinction between an article that takes off or doesn’t (hence
classification).

#Shares Density

5000

4000 4

3000 A

2000

1000

0- U U T T T T
o 2500 5000 7300 10000 12500 15000 17500 20000

3.2 Time vs Shares

At first thought, it doesn’t seem like we can take the share number verbatim,
as we may worry a) the article’s longevity and b) the overall increase of visitors
to the news site may skew the observations.It turns out after looking at the data
that the average number of shares, taken in chronological batches, was relatively
constant. For our purposes, we’ll assume a) and b) either cancel out or aren’t
too big of a hindrance, treat the age of the article as a feature, and proceed
without normalizing the number of shares.

Article Age vs #Shares

800000 1

600000 e

400000

200000 1

T T T T T T T
700 —-600 500 —400 300 -200 100]

4 Naive Bayes Classification

To get a feel how useful vocabularies will be for my task, I first tokenized all
sentences of all articles, and removed stopwords. For experimentation purposes,
I only take the first 1000 articles.

After constructing a good vocabulary set, I built a frequency matrix for the
articles. At first, I thought only [nouns, proper nouns] is enough (i.e. seeing
"Kardashian” = high shares), but after getting only 0.60 accuracy, decided to
systematically optimize a good part-of-speech filter.

Starting with an empty POS feature set, I applied forward search, picking
the POS in combination with the existing feature set produces the highest delta
score, and append it to the feature set until no feature improves the score. The
result is [plural nouns, past-participle verb, present-participle verb], with a score
of 0.69 (on only 1000 articles!), which is a good sign.

(P.S.) The most predictive words for Naive Bayes are, in order, ['shootings’,
’subscribers’, ’subjects’, "prosecutors’, ’clues’].

5 Kernalized Linear Regression

Using the Naive Bayes log-probability for an article, I can feed it as a (hope-
fully useful) feature in linear regression.

I applied the linear and sigmoid kernels on support vector regression, quickly
obtaining an accuracy of 0.65 on a small sample, which easily puts shame to the
reported 0.52 accuracy of my predecessors using the same method, so the new
feature does indeed make a significant difference.

After doing this, I realized the most telling of vocabularies aren’t words, but
bigrams (Donald Trump) or n-grams (United States of America). At that point
T thought I needed to expand the feature set (even if it may become very sparse)
and find ways to reduce dimension later.

6 Working with the Article Itself

6.1 Title

We begin with the most promising predictor - the title (duh)! Word2Vec is
a form of unsupervised learning that maps a set of words to continuous vectors
in a way words that appeared in similar contexts (sentences, documents, etc.)
have similar features have higher dot products. By taking an average of the
word vectors in a title, we can approximate a ”title” vector. The resulting title
vector is appended as fifty new numerical features.

(Later, I wondered if the TF-IDF matrix itself of the title can be useful, so I
applied a similar approach as working with the content (see below); I added in
bigrams and trigrams to form a vocabulary to get an incredibly sparse TF-IDF
matrix, but after doing LSA this actually worsened the accuracy, so I decided
to leave this part out. You can see this tangent in the code).

6.2 Keywords

Although it would’ve made sense to apply the same approach as the title, I
also recognize that many articles have "filler” keywords, and I want to make

sure common ones like "world” or ”society” are weighted less than words like
”crime”, so similar to the title, I applied a TF-IDF transformation.

6.3 Content

Again, we form a vocabulary of all n-grams up to hex-grams (we can push
further, but six consecutive words seem like a reasonable cutoff for phrases) so
we can apply tfidf. But wait. That’s a lot of features!

It turns out, past a certain point in the past, the content isn’t even relevant
anymore. To find when increasing the vocabulary set becomes counterproduc-
tive, I plot classification metrics against the starting batch from which content
is used; this peak turns out to be around 22000.

F1 and Average Recall vs Starting Batch

*9
0.50 P
L N}
. oo * v
0451 * %y [
e .

L ¢
0.40 - Vs \
0.35 1

.
15000 20000 25000 30000 35000

Next, to reduce the dimension, we have two approaches - a) use Lasso Re-
gression with a strong regularization constant to drive trivial feature coefficients
(words/n-grams) to zero, or b) use LSA to capture the variance of the tf-idf’s
of the existing vocabulary set. There seems to be a trade-off (bias-variance)
between dimension reduction via the two approaches, so we experiment to find
the what combination of each.

(I chose Lasso because it works well with large, sparse features, and Truncat-
edSVD because of its effectiveness with tf-idf matrices for documents.)

After a param search over C (reg constant), alpha (cutoff threshold for coef
elimination), and reduced dimension d, I obtain values of {C, o, d} = {6.5,0.4,1500},
where C produced the highest F1 score via Lasso regression on the training data,

a reduced dimension by a factor of 5, and d captured > 70% of the variance.
With 1610 numerical features ready (61 of them being the original meta-
data), it’s time to put it all together.

7 Results

Method Eval Acc. | Eval Prec. | Test Acc. | Test Prec.
(1) Lasso Regression 0.67 0.63 ? ?
(2) Support Vector Classifier 0.65 0.65 ? ?
(3) Random Forests 0.68 0.64 ? ?
(4) Neural Networks 0.66 0.61 ? ?

I have yet to use the test set, as I want to tune this on the validation set a bit
further after the course ends.

1. This set a highly effective baseline. Somewhat surprisingly, this outper-
formed Ridge Regression, implying more features could have been elimi-
nated.

2. This had a recall and specificity of 0.65 too; it’s seems to have ” converged”
to a very stable point. Getting a high precision is especially hard with
articles, and it seems finding a separation boundary outperforms all other
models.

3. This was the previous project’s best result. I had issues surpassing it as
my engineered features don’t fit well with random forests.

4. Parameters were tuned from the heuristic that the max features considered
for each split decreases precision, and min samples needed for a split should
decrease as variance is lowered with more trees. As it turns out, random
forests aren’t very effective in dealing with all the engineered continuous
features.

8 Conclusion

The goal of this project was to predict the binary popularity label of an ar-
ticle from its metadata and content. I engineered new features by extracting
the word2vec of the title, the TF-IDF-weighted vectors of the keywords, and
the LSA-reduced TF-IDF counts obtained after a Lasso feature selection on the
vocabulary set for the content. With common sense and experimentation, my
engineered features are (in a weak sense) optimal considering I didn’t resort
to any more powerful methods. Each approach I used cleanly outperforms the
metadata-only counterpart of the project that inspired mine, with the excep-
tion of random forests, which as discussed above doesn’t work well with my
engineered features. It seems likely 0.69 is a fundamental limit to this task’s
performance, as a) the shares distribution is continuous and a lot of articles
fall close to 1400 shares, and b) there is an inherent degree of noise and unpre-
dictability in article readership (i.e. what happens in the first hour).

9 Takeaways / Future Work

Nonetheless, T got to experience the uncertainty and excitement involved in
applying machine learning to a relevant problem in industry. Text is incredibly
rich in information, but pruning out the noise required me to think critically and
resourcefully, finding the most relevant features I need (Table 2) and reducing
features/dimensions when necessary (Lasso and LSA). I also got deeper domain
insights, like the relevance of keywords, importance of titles, and usefulness of
word vectors from the content. Finally, I learned how to combine a heteroge-
neous set of features together, accounting for variable interactions/dependencies,
and the bias-variance trade-offs between different models (i.e. regression with
no feature engineering vs random forests on “split”able features).

Ultimately, the goal is to dig deeper into the article extract the best predictors
of popularity, but first I am curious how much predictive power is in the url and
first sentence of the article. Afterwards, I want to investigate a more recurrent
approach by ordering the features (i.e. url =; keywords = title =; first sentence
= first paragraph =; etc.) and having the algorithm halt once it has “enough
information” (this is similar to how humans read articles). Via rewards, the
agent learns to prioritize which features are more important and which to look
at first.

