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Abstract

Atherosclerotic Cardiovascular Disease (ASCVDs) is the number 1 cause of death
globally. Identifying at-risk individuals is important for early prevention and timely
treatments. Although there is an abundance of prediction models for ASCVDs,
the use of EHRs is still at the beginning. We utilized the large Electronic Health
Records from the Stanford Translational Research Integrated Database Environ-
ment (STRIDE 8) to derive a valid cohort and build a gradient boosting model
predicting CVD risks. Our model performed very well compared to the standard
risk prediction scores and neural networks results from the literature, but raised
questions regarding fairness when applying to subgroups with sensitive attributes
such as gender, age, and race/ethnicity.

1 Introduction

Atherosclerotic cardiovascular disease (ASCVD), a common in the general population, generally
refers to heart and blood vessel diseases where the blood vessels are narrowed or blocked due to
plaque builds up. This can prevent blood flow and allow opportunities for blood clot formation
when ruptured. The consequences including a heart attack and a stroke. Cardiovascular disease is
a leading cause of morbidity and mortality worldwide (Wessler et al., 2015). In the United States,
about 610,000 people die of heart disease every year, and that is 1 in every 4 deaths (cdc.gov).

In 2013, the American College of Cardiology and American Heart Association (ACC/AHA) released
updated guideline on the assessment of cardiovascular risk, with a Pooled Cohort Equation (PCE)
to predict 10-year risk of first ASCVD. Since then, there have been numerous studies evaluating
the performance of PCEs with mixed results (Karmali, 2017). Early prevention is important and
this involves identifying at-risk individuals. Although there is an abundance in predictions models
developed in the recent years, the use of electronic health records (EHRs) in predicting ASCVD
risks is still at the beginning. However, the rise of machine learning applied in big data provides an
opportunity for mining EHRs to develop models predicting ASCVD risk.

This project aimed to build a model to predict ASCVD risk using EHRs from Stanford Translational
Research Integrated Database Environment (STRIDE), version 8. The input to our algorithm is a
data frame consists of about 40,000 features and outcome labels as ASCVD events. We then used
a logistic regression model as our baseline and a final gradient boosting model to output predicted
probabilities of having an ASCVD event on individual levels.

Recently, the notion of fairness in machine learning has increasingly gained attention. To simplify,
a model is considered fair if it performs consistently similar for members of subgroups based on
some defined fairness metrics. With this in mind, we will also evaluate the model performance for
subgroups with sensitive attributes (such as race, gender, and age group) as an exploration step to
motivate further study on fairness in modeling.
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2 Related work
• Predictions without using EHR data: Traditionally in medicine, prediction models select

a specific and limited number of features. A systematic review of prediction models for
cardiovascular disease risk in the general population were done in 2016 showed the median
number of predictors was 7, and the range was 2-80 (Damen et al., 2016). Commonly used
predictors include age, smoking, blood pressure, blood cholesterol measurements, diabetes,
and body mass index. In terms of methods, most used Cox proportional hazards and logistic
regression, with area under the receiver operating characteristic curve (AUROC) ranged
from 0.61 to 1.00 (Damen et al., 2016). These simpler models are sometimes preferred
because they are easier to understand and interpret. Despite the abundance of models,
wide variation makes direct comparisons and validations difficult, and implementations
are uncertain. Moreover, most prediction models were developed in North American and
European populations (Damen et al., 2016). This suggests a need for models that include
more diverse populations, tailor to more local settings, expand with new predictors, and
utilize different sources of data such as EHRs.

• Prediction with EHRs: A different systematic review on the use of EHRs in risk prediction
models suggests both opportunities and challenges. EHR data is larger with more patients,
more features, and data points collected more frequently; thus, it seems to reflect more of
real-world data. However, it lacks the standardization, strict controls and structures that large
cohort studies have, so EHR data can be very messy. For example, outcomes and diagnoses
vary depending on the source such as billing codes and problem lists, and heterogeneity in
outcome definitions remains an issue (Goldstein et al., 2017). To our surprise, the use of Cox
models and generalized linear regression also remains most commonly used with EHR data,
and with a median 27 features. Other approaches include Bayesian methods, tree-based,
and regularized regressions with LASSO and Ridge (Goldstein et al., 2017). Most of the
reviewed studies used AUROC as the evaluation metrics, and model performance is worse
the further out the prediction is done. A recent buzz-worthy paper (Rajkomar et al., 2018),
employed a complex weighted RNN and LSTM model for predicting different medical
outcomes using EHR data. However, in the supplemental readings, their baseline model’s
AUCROC is only 0.01 - 0.02 lower than the deep learning model. For example, with 30-day
readmission, deep learning model performance for hospital B had an AUROC of 0.76 vs 0.75
for baseline logistic regression model trained using the Adam optimizer with early-stopping
(Rajkomar et al., 2018).
• Recent developments using EHRs in ASCVD risk predictions: Using EHR data to assess

the common risk score equations like QRISK2, FRS and PCE (Pike, 2016) and (Wolfson et
al., 2017) evaluated these score performance with AUROC ranged from 0.6 - 0.75. (Weng
et al., 2017) compared the performance of ACC/AHA risk score PCE to machine-learning
algorithms, and concluded that machine-learning algorithms improved prediction. Whereas
PCE achieved an AUROC of 0.728, random forest, logistic regression, gradient boosting and
neural networks achieved AUROC of 0.745, 0.760, 0.761 and 0.764 respectively. (Zhao et
al., 2019) compared the performance of PCE with had an average AUROC of 0.732 to those
of machine learning models (logistic regression, random forest and gradient boosting trees)
with AUROC of 0.765 – 0.782. When utilizing longitudinal features, gradient boosting trees
and convolutional nerural networks achieved equally highest performance AUROC of 0.790
(Weng et al., 2019).

3 Dataset and Features

To explore and utilize the wealth of EHR data, we derived a large cohort from STRIDE8 to build a
prediction model for ASCVD risk. STRIDE data contains clinical information on over 1.3 million
pediatric and adult patients Stanford University Medical Center since 1995 (Lowe, 2009). We
followed the cohort definition from the 2013 ACC/AHA guideline on the assessment of cardiovascular
risk. More specifically, our inclusion/exclusion criteria are closely aligned with (Mutner et al., 2014)
study.

We excluded patients who had any history of ASCVD incidence, based on ICD9 and ICD10 diagnose
codes, such as myocardial infarction, coronary heart disease, stroke, atrial fibrillation, and heart
failure. We also excluded patients who were on antilipidemic medications. This is a significant
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change from the previously published paper of our lab (Pfohl, 2018). Outcome is defined as ASCVD
event of myocardial infarction, stroke, or death within a year of a coronary heart disease diagnose.
Due to the revised algorithm, our cohort has changed, with a significance reduction in positive
outcome labels. Selected patients had ages ranged from 40 to 90. Random prediction times were
chosen during valid time frames between their first visit and last visit such that patients have at least
a year of history and a year of follow-up.

For feature extractions, we utilized the Observational Medical Outcomes Partnership Common Data
Model (OMOP CDM), as described in (Reps et al. 2018) to covert a series of time-stamped clinical
elements across different concept domains (mapped to SNOMED) to a static presentation for each
patient (Pfohl, 2018). This standard method has been used widely in the Observational Health Data
Sciences and Informatics community, enabling model sharing and reproducibility. Features include
diagnoses, conditions, procedures, medication orders, lab tests, measurements, clinical encounter
types, departments, and other observations. Each feature is a binary value that represents whether a
concept is present or missing at a certain time anywhere in the patient’s history prior to the prediction
time. The final complete data for modeling has 256,583 patients and 39,558 features in form of a
sparse matrix of features. The percentage of positive outcome labels in our cohort is about 1.7%.

We explored the incidence rate in some subgroups with sensitive attributes such as gender,
race/ethnicity and age groups. We found that although there are more female patients in our cohort,
males have higher incidence of having ASCVD events compared to females (2.1% vs. 1.4%). Among
different known race/ethnicity, White group is the majority, about 4 times more than Asians, 6.4
times Hispanic/Latino and almost 15 times Blacks. However, Blacks has the highest incidence rate of
ASCVD events of 3.2% compared to the rest where their incidence rates are about 1.7 - 1.8%. For
age groups, the ASCVD incidence rate is monotonically increasing with age.

We split the data into 80% of training and 20% of test. With 80% of the data for model training, we
used 10-fold cross validation while training and evaluating.

4 Methods

We chose to use logistic regression and gradient boosting trees as two machine learning algorithms
for our prediction task. This was decided from reviewing the literature to select good performing
algorithms (that are not neural networks). Logistic regression is a fair choice as a baseline model, and
gradient boosting trees seem to perform consistently well from literature review. There was also a
practical purpose as glmnet and xgboost are two R packages that support sparse matrices. Our data is
quite large and we had to use a sparse matrix feature for the purpose of storage and speed.

Baseline model - Logistic regression with regularization:

Our outcome is binary, indicating whether or not a patient has an ASCVD event after their prediction
time. For modeling binary outcomes, logistic regression is probably the most commonly used
model. Logistic regression, which is an extension of linear regression, models the probabilities for
classification problems with categorical outcomes. By choosing a threshold between 0 and 1, we
could then classify the predicted outcomes into 2 categories.

With a large number of features in our data, regularization is a necessary technique for preventing
over-fitting to train a better model so that when we use the model on a completely unseen data, the
model can be expected to generalize and perform reasonably well. The two well-known regularization
techniques in regression are Lasso and Ridge, adding constrains to shrink the coefficient estimates,
which reduces model complexity. In addition to shrinkage, Lasso also results in feature selection,
which could be more useful on our high dimensional data set. Regularization therefore helps reduce
the variance of the model without substantially compromise bias.

The objective function for the regularized logistic regression is:

min
(η0,β)∈Rp+1

−

[
1

N

N∑
i=1

yi · (β0 + xTi β)− log(1 + e(β0+x
T
i β))

]
+λ
[
(1−α)||β||22/2+α||β||1

]
(1)

When applying regularization, Ridge retains all of the features but shrinks the coefficients whereas
Lasso sets some correlated variables to zero. A combination of both, also known as elastic net, can
be used to achieve better performance.
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Gradient Boosting Decision Trees, with regularization - XGboost

Gradient boosting model uses a decision tree ensemble consisting of a set of classification and
regression trees. These trees in boosting are built sequentially such that each subsequent tree learns
from the trees that lead to it and aims to reduce the errors of the previous trees. Although each
tree can be a weak learner (also called a model, or a regression tree), it still contributes valuable
information to the overall prediction task. In addition, an ensemble of these weak learners can build
a stronger learner. Each tree has 2 kinds of parameters: weight of each leaf and number of leaves.
When building a tree, to find the best split for each tree, greedy algorithm is used for small and
medium data set. With large data set, approximate algorithm is used instead (Chen and Guestrin,
2016).

The model trained in an additive manner, in which the learning objective function is a set of additive
regression trees, where each tree contains continuous scores on the leaves. These are used to calculate
the final predicted probabilities by summing up the scores in the corresponding leaves (Chen and
Guestrin, 2016).

The objective function to be minimized is:

L(θ) =
∑n
i l(yi, ŷi) +

∑K
k=1 Ω(fk) where Ω(f) = γT + 1

2λ‖w‖
2 (2)

A gradient descent algorithm is used to minimize the loss when adding new regression trees. Here, `
is a differentiable convex loss function that measures the difference between the predicted values
and the truth. Decision trees are one of the most easily interpretable models, but usually with high
variance. And Ω(f) is a regularised term that discourages the complexity of the model to help reduce
variance (Chen and Guestrin, 2016).

We used XGBoost as an implementation of gradient boosting decision trees, which is designed for
speed, scalability, and performance. Xgboost also implements L1 and L2 regularization as in Lasso
and Ridge regression, with many hyperparameters to tune. We did not use regularization with column
sub-sampling.

5 Experiments/Results:

We chose the area under the receiving operating characteristic curve (AUROC) as our evaluation metric
as it does not depend on the threshold for classification, and is helpful in case of binary outcomes,
especially with imbalanced classes. Another commonly used evaluation metric for imbalanced classes
is the area under precision and recall curve (AUPRC). However, from our literature review, most used
AUROC, so we also used AUROC as our primary evaluation metric for comparison purpose.

Hyperparameter Tuning: We split the data into 80% training and 20% testing. With the training
data, tuning was done using 10 fold cross validation for both logistic regression and gradient boosting
trees, minimizing the objective loss functions. AUROC was used as the evaluation metric for
the validation data during cross validation and for evaluating model performance on the test data
subsequently.

Logistic regression: We modeled logistic regression with 3 cases of regularization: Ridge only
(α = 0), Lasso only (α = 1), and both (α in between 0 and 1). The regularization hyperparameter λ
was tuned. It turned out that using an elastic net, which is a mix of L1 and L2 norms or a compromise
between Lasso and Ridge, shrinks and does a sparse feature selection simultaneously. This yielded
better results than just using either one of the two techniques alone. The AUROC for the 3 models
are: 0.728, 0.741, 0.731 for Ridge, elastic net (α = 0.5), and Lasso respectively.

Gradient boosting trees: We first tuned manually and then a grid search over more than 100 models,
tuning selected hyperparameters to avoid over-fitting. For maximum number of trees to grow, it was
done in parallel with early stopping to stop the training of the model once the performance on the
validation set has not improved after 5 iterations. For maximum depth of a tree, although our dataset
is large, we used small numbers of depth (4, 6, 10), making the model less complex. After getting
the weights of new features at each boosting step, learning rate (0.025, 0.05, 0.1) shrinks the these
weights to make the boosting process more conservative. Last, we also tuned lambda and alpha (0.2,
0.5, 0.8), controlling for L2 regularization (Ridge regression) and L1 regularization (Lasso regression)
on weights respectively.
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To address a major property of our data, which is extremely imbalanced outcome labels where the
ASCVD incidence rate is only 1.7%, we looked into different approaches, but did not find anything
every satisfactory. With xgboost, we tuned the maximum delta step to help with convergence but
void re-balancing the dataset and aim for predicting the right probabilities.

When we evaluated the final model performance on subgroups with sensitive attributes such as gender
and race, we found that there are moderate gaps among these groups, which suggests that the model
is not fair. This can have negative social and health implication when it comes to decision making.

Overall, with both logistic regression and gradient boosting trees, we tuned aggressively to avoid
over-fitting and be conservative with our models considering we had a large number of features.
Judging from the very narrow gap between average validation and test set AUROC, we think our
model did not over-fit.

6 Discussion:

To handle the extreme class imbalance issue, we explored up and down sampling, Synthetic Minority
Over-sampling Technique (SMOTE), and adding weights in loss functions. We avoided up-sampling
as this would result in dependent observations and add more computation burden. Using the original
data, it took over 6 hours to train a logistic regression model with 10 fold cross-validation. With
down sampling, the results did not improve as much. We attempted this with binomial deviance
metric and did not have enough time to redo with AUC metric for comparison. SMOTE is a clever
technique in which it creates synthetic observations from the existing minority observations using
the k-nearest neighbors, couples with under-sampling the majority class. Although we explored this
technique, we did not implement it as there was no support for sparse matrix with SMOTE in R.
These techniques however introduce a bias as they select more or less samples from one class than
from another. Since our gradient boosting models with original data do reasonably well compared to
those in literature, we focused our efforts in tuning our gradient boosting tree models. Xgboost also
has an option for scaling the number of observations to handle imbalance issue. So we stayed true to
the data we derived from STRIDE. However, when testing on similar data with even lower incidence
rate, AUROC decreased. So approaches to handle class imbalance well is worth exploring further.
Overall, Xgboost performance is consistent and in terms of speed, it is superior compared to glmnet.

7 Future Work:

Another approach we would like to consider is the inverse probability of censoring weighted (IPCW)
to penalize more for under-performance in predicting rare positive labels. In order to implement
IPCW, we would need to constraint the length of time, for example, 10 years, for evaluating outcomes
to avoid the exploding weight problem for some right censored observations. When evaluating our
model performance on the subgroups, it is clear to us why the notion of fairness in machine learning
has gained momentum in the last few years. (Pfohl, 2018) attempted to create a fair model predicting
ASCVD risk using adversarial networks which showed to reduce variability across subgroups with
sensitive attributes. When it comes to decision making, this will hopefully lessen the degree of
mis-estimation for minority groups in order to avoid harm.
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