
CS 229 (SPRING 2019) 1

Predicting the Popularity of Reddit Posts
General Machine Learning

Ahmed Shuaibi {ashuaibi@stanford.edu}

Abstract—Accurately predicting the attention a Reddit submis-
sion receives elucidates the relative significance of inherent and
engineered post features, thereby granting us a greater under-
standing of popularity on the site as a whole. While predicting
the popularity of articles in news domains is well charted, the
task of predicting the popularity of Reddit submissions is not
as significantly explored. Furthermore, any attempts to do so do
not utilize natural language processing techniques and features
such as the use of existing, well-developed word embeddings. In
this paper, the task of predicting Reddit submission popularity
given a post is tackled. Sentiment classification of a post’s text
is obtained and utilized in addition to the GloVe embeddings of
its component words. Linear, K-Nearest-Neighbors, and Random
Forest Regression are utilized and assessed.

Code: github.com/ashuaibi7/RedditPopularityPrediction

I. INTRODUCTION

Reddit is a popular discussion and content rating social
website. Individuals can submit image or text posts that are
constantly evaluated by the site’s other users through a system
of upvoting and downvoting. The amount of upvotes a post
receives determines its popularity and thereby impacts its
visibility on the site. A variety of factors play a great role
in determining the popularity of a post.

Reddit is composed of a variety of subreddits, which are
essentially themed forums with outlining rules that regulate
the type of allowable posts among other things. While many
subreddits allow for posts that contain images as part of the
content, many only allow for posts entirely comprised of text. I
will focus my popularity prediction on a popular text-post only
subreddit: AskReddit. I utilize a variety of features derived
from a post and its contents to predict its popularity determined
by number of upvotes.

As input, the model begins with a Reddit post from AskRed-
dit. I then use Linear, KNN, and Random Forest regression to
ouput a predicted upvote score, the number of upvotes a Reddit
submission recieves. This score indicates the popularity of a
post.

II. RELATED WORK

• Segal and Zamoschchin first tackle the prediction of
Reddit post popularity as a classification problem. They
define an upvote threshold that determines if a post is
popular and consequently use the metadata of a post
as features to classify it. Such metadata includes the
subreddit a post belongs to, the author of the post, and
the time of day the post is created. Among the post’s
text, they only use frequency of occurrences of words in
the title as features [5] and do not explore more in depth
NLP word embeddings.

• Terentiev and Tempest similarly tackle the problem as a
binary classification task. Contrastingly, they focused on
predicting popularity based off the initial 10 comments a
post received. Working only with 2000 training examples,
they engineered features such as sentiment based off the
initial comments. They consequently utilize a variety of
classification models such as SVMs, Logistic Regression,
and KNN clustering to predict popularity [2].

• The work of Poon, Wu, and Zhang aims to recommend
posts to users based off their preferences and other
submissions they upvote. They do so using models such
as KNN, K-means, and SGD. Their work elucidates
several impactful features in a Reddit recommendation
system, thereby urging their consideration in a popularity
prediction system [3].

• Chandramouli, Moni, and Elango predict the popular-
ity of posts given features such as subreddit, author
engagement in comments, and sentiment classification.
Instead of analyzing the post’s title or text, they prioritize
a natural language evaluation of a post’s comments,
weighting the frequency of positive/negative comments
of a post in their prediction [8].

• White, Togneri, Liu, and Bennamoun evaluate how
well different combinations of word embeddings capture
meaning. They assess how much information is retained
in a sum and mean of word embedings (SOWE/MOWE)
of a piece of text. They assess this question with the
task of semantic classification using SVMs. Their insight
into the utility of MOWE will be used to capture a
representation of a post’s content in this project [6].

A. Dataset and Features

The raw data comes from Pushshift.io [4], which contains a
collection of reddit posts from 2011 in which the data dumps
are divided by month. The raw data contains one post per line
formatted as a json entry with 96 fields to encompass the post’s
information. Among these fields are created utc, author, and
subreddit id. I focused my analysis on the first 6 months of
2018, which comprised a total of 14 gigabytes of raw data. I
proceeded to filter out all posts that did not originate from the
subreddit AskReddit. Following this initial filter, I filtered out
posts that had their content deleted or removed in addition to
posts with empty content (blank post with no title) [1]. Finally,
I retained post features that would best inform the popularity
of a post. Particularly, these features are:
• created utc - UNIX timestamp of the moment of the

post’s creation.
• num comments - The number of comments that a post

received.

CS 229 (SPRING 2019) 2

• gilded - The number of times a post was gilded. Gilding
is a when a user grants another user’s post Reddit gold.
This gold can be purchased and utilized to unlock extra
features on Reddit.

• over 18 - A boolean tag indicating if the post is intended
for mature audiences.

• title - Raw text post title. All AskReddit posts only
contain a title and no body text.

This left a total of 1, 427, 490 Reddit posts. I split the data
into 70/15/15 train/dev/test and left the test dataset untouched
until the final evaluation. I ensured that the data was randomly
split (using a seed for reproduciblity).

I also use the Natural Language Toolkit (NLTK) Twitter
dataset. Due to the lack of manually labeled sentiment reddit
post data, I decided that I would use Twitter data for the
sentiment classification of the post’s title. Although it would
not be perfect since tweets will not perfectly generalize to
Reddit posts, I found it sufficient to use for the purposes
of engineering a title sentiment feature. This NLTK Twitter
dataset contains a set positive tweets and negative tweets that
are manaully classified. The tweets are preprocessed by first
removing hashtags and hyperlinks. Stopwords, very common
words such as the, are then filtered out. Finally, the tweets are
tokenized using an NLTK tokenizer.

B. Feature Engineering

I will walk through the above features listed, their modifi-
cations, and their use in the final models. With created utc,
I felt that it would be most useful if the day of the week and
the time of day was encoded. Thus, I created two variables:
weekday and hour that represented the day of the week (0−6)
and the hour of the day (0 − 23) respectively. With linear
regression models, I need to convert these categorical variables
to ones that I can utilize. I therefore utilized dummy variables
to encode these categorical variables as dichotomous variables.
I kept the numerical features of num comments and gilded
as is. Just as with weekday and hour I utilized a dummy
variable to encode the boolean over 18.

With regards to title, I wanted to highlight three important
aspects. The first was the length of the title itself in which I
created the feature title length that represented the character
length of the title. The second was the sentiment that the title
expressed: positive or negative. I created a basic sentiment
classification model using logistic regression based on NLTK
Twitter data. As features, I used:
• pos words - number of positive words in a tweet
• neg words - number of negative words in a tweet
The output of this classification model will be the sentiment

of a particular tweet. I used the weights learned in the logistic
regression model for the classification of AskReddit posts after
obtaining the respective poswords and negwords features for
each post. This new feature sentiment will take on a value
of +1 for positive sentiment and −1 for negative sentiment.
Just as with over 18, I created a dummy variable out of this
boolean variable to use.

Lastly, I utilize GloVe to obtain embeddings of all the words
in a specific title [7]. GloVe has pretrained embeddings that

Fig. 1. visually is depiction of GloVe training with co-occurrence between
words

are effectively informative vector representations of individ-
ual words. These embeddings are trained by evaluating co-
occurrence between words in a large corpus of text data. This
similarity and co-occurrence allows us to encode particular
words similarly. Consider the words and co-occurrence vector
distance measurements between them as an example in Figure
1.

I use the technique evaluated by White in How Well Sen-
tence Embeddings Capture Meaning by obtaining the mean of
all word embeddings (MOWE) for a particular Reddit post.
This 300 dimensional vector sufficiently encodes a represen-
tation of the words in an AskReddit post’s content. Note that
standard tokenization and filtering applies before obtaining the
word embeddings. Consider this simple example AskReddit
post to see how this feature is generated:

”What are your new year resolutions?”

After tokenizing, the sentence is converted to lowercase and
any required words are stemmed. Stemming is the reduction
of related words to the root word they are derived from. It
often includes cutting of affixes. For example, ”planning”,
”planned”, and ”plans” would be stemmed to ”plan”. In this
example, ”resolutions” is stemmed to get ”resolution”. After
this, we obtain the resulting list:

[”what”, ”are”, ”your”, ”new”, ”year”, ”resolution”, ”?”]

The 300-dimensional representations of each of these tokens
is obtained from the downloaded GloVe embeddings and
averaged to get one final 300-dimensional representation for
this AskReddit post.

In short, the final models utilize these existing and engi-
neered input features:
• hour - Hour of day of post creation: 24-dimensional one-

hot-encoded-vector.
• day - Day of week of post creation: 7-dimensional one-

hot-encoded-vector.
• num comments - Number of post comments: ∈ N

CS 229 (SPRING 2019) 3

• gilded - Number of times gilded: ∈ N
• title length - Length of title: ∈ N
• over 18 - Is for mature audiences: 2-dimensional one hot

encoded vector.
• sentiment - Sentiment (positive/negative) of post con-

tent: 2-dimensional one-hot-encoded-vector.
• embeddings - Mean of word embeddings of all words in

post title: 300-dimensional vector.

III. METHODS & EXPERIMENTS

A. Metrics

I utilized two metrics in order to evaluate the models. The
first was RMSE, defined as:

RMSE =

√
1

n
Σn

i=1

(di − fi
σi

)2
Effectively, this a measure of the standard deviation of the
residuals.

I also used R− squared to measure how well a regression
line fits the data:

R2 = 1−
∑

i(yi − fi)2∑
i(yi − ȳ)2

Effectively, this indicates how well the dependent variable of a
Reddit post (the upvote score) is explained by the independent
variables (highlighted above).

B. Models & Experiments

Prior to an in-depth ablative analysis, I tested all these
models with and without the incorporation of the GloVe word
embedding data. Therefore, I will highlight their performances
with and without the incorporation of the 300 dimensional
vector encoding of the title. As a simple baseline model, I
predicted the score of a post to be the median of the scores
of the post in the training dataset. This simple baseline gives
an RMSE of 645.19 and an R2 value of 0.001.

1) Linear Regression: Linear Regression with an ordinary
least squared loss objective and default learning rate of 0.0001
was used:

Cost =

n∑
i

||yi − ŷi||22

Evaluating the model gives an RMSE of 355.14 and an R2

value of 0.7204. After incorporating the word embeddings as
features, the model gives us an RMSE of 353.74 and an R2

value of 0.7283, only marginally better performance.
It is important to note that a standard linear regression

model is relatively inflexible and is subject to a high bias,
and is therefore subject to underfitting. This prompts the
consideration of models that have more flexibility and lower
bias. One such model is K-Nearest-Neighbors Regression.

2) K-Nearest-Neighbors Regression: KNN Regression
computes and considers examples that are closest together
in the feature space. After finding the 5 nearest neighbors to
a particular example, the average of these neighbors’ scores
is used as the predicted value. For this model, the standard
Euclidian distance function is used. While other distance
functions were tried, using Euclidian distance gave the best
results:

distance =

√√√√ k∑
i=1

(xi − yi)2

Evaluating the model gives an RMSE of 353.22 and an R2

value of 0.7289. After incorporating the word embeddings as
features, the model gives us an RMSE of 344.32 and an R2

value of 0.7408, slightly better performance.
While Linear regression was subject to high bias, KNN

Regression is subject to having high variance. The flexibility
of the model and computation of predictions based off only
5 neighbors causes this issue. KNN inherently depends on
finding neighbors for a particular example in the training data.
While having a very large training dataset reduces variance to
an extent, KNN Regression may still not generalize very well.
This prompts us to consider a model that is not subject to very
high variance, Random Forest Regression.

3) Random Forest Regression: This form of regression uti-
lizes a combination of multiple decision trees and the average
score of these trees to arrive at a Reddit post score prediction.
Random Forest Regression utilizes bootstrap aggregation to
continuously randomly sample examples from the training
data to fit decision trees. After doing this random sample
with replacement and thereby obtaining B decision trees, the
prediction for a test example is given by:

f̂ =
1

B

B∑
b=1

fb(x
′)

Evaluating the model gives an RMSE of 304.92 and an R2

value of 0.7764. After incorporating the word embeddings as
features, the model gives us an RMSE of 301.32 and an R2

value of 0.7855.
Random Forest Regression is less likely to overfit the

training data and is therefore more generalizable. The tech-
nique of bootstrap aggregating effectively reduces variance
when compared to KNN Regression. Therefore, unlike Linear
Regression that has a high bias or KNN Regression that has
a high variance, Random Forest Regression presents a better
bias-variance tradeoff balance.

IV. RESULTS & ERROR ANALYSIS

Relative to the baseline, we observe significantly decreased
RMSE among Linear, KNN, and Random Forest Regression.
Specifically, we note 45.17%, 46.63%, and 53.49% decreases
in RMSE respectively among the models that account for the
mean of the title’s word embeddings as features. Random
Forest Regression using word embeddings as features had the
smallest RMSE at 301.32. Relative to one another, we can
visualize the model performances using RMSE in Figure 2.

CS 229 (SPRING 2019) 4

Fig. 2. Plot of RMSE vs. Model used, with and without accounting for
embeddings feature

Fig. 3. Plot of R-squared vs. Model used, with and without accounting for
embeddings feature

Word embeddings proved to be slightly impactful as fea-
tures. Relative to the counterparts of the models that did not
use them, there was only a 0.39%, 2.5%, and 1.1% decrease
in RMSE for Linear, KNN, and Random Forest Regression
respectively. Although they were not the most impactful, as
can be seen in the ablative analysis section, they held some
significance in indicating the popularity of a Reddit post.

We also notice increasing R2 values in using KNN Re-
gression over Linear Regression and in using Random Forest
Regression over KNN Regression. Random Forest Regression
using word embeddings as features had the greatest R2 at
0.7855. We compare the R2 values of all the models in Figure
3.

V. ABLATIVE ANALYSIS

To evaluate the importance of the features used, I removed
one at a time from the original model and observed the relative
decrease in R2 to see how well the new set of features
explains the output score. We note that the most signficant
features in prediction were the num comments and gilded,
which indicate the number of comments a post has and the
number of times a post was gilded respectively. The third

Fig. 4. Removing a feature and the relative decrease in R-squared when
compared to the original R-squared accounting for all features using a Linear
Regression Model

most important feature was the mean of word embeddings
of the words in a post title. Although completely unique posts
gain popularity, many recycled posts on AskReddit repeatedly
gain popularity. The similarity between these posts and their
repeated popularity in part intuitively explains the significance
of embeddings in popularity prediction. Surprisingly, features
such as sentiment were not significant at all in predicting the
popularity of a post. In analyzing the data, I note that only
2.7% of AskReddit posts in the training data have a positive
sentiment classification. Figure 4 fully outlines the relative
decrease in R2 that removing a feature brought about.

VI. CONCLUSION & FUTURE WORK

Using Reddit submission data, I was able to fashion features
and evaluate models that predict the popularity of a Reddit
post. Unlike existing approaches, I focused greatly on the
text content of a Reddit post and used features such as
sentiment classification and averaged GloVe word embeddings.
Overall, the Random Forest Regression model had the greatest
performance. Unlike the inherently high bias model of Linear
Regression and the high variance model of KNN Regression,
Random Forest Regression possess a better bias-variance
tradeoff balance due to utlizing such techniques as bootstrap
aggregation. Random Forest Regression achieved an RMSE of
301.32 and R2 of 0.7855

While embedding representations for the title were gener-
ated, I believe embedding representations for a subset of the
comments would also be a beneficial feature in popularity pre-
diction. Furthermore, given time and computational resources,
specific word embeddings can be generated with GloVe given
a corpus of Reddit data that may be more suitable for this
task. Finally, this popularity prediction can be applied to other
subreddits and can utilize features that do not solely depend on
text, such as attached images or links. Incorporation of such
additional features in combination with the NLP techniques
presented here can help create a better popularity prediction
model for Reddit posts.

CS 229 (SPRING 2019) 5

REFERENCES

[1] Adam Reevesman. Reddit Comment Karma, Dec 2018.
[2] Andrei Terentiev and Alanna Tempest. Predicting Reddit Post Popularity

Via Initial Commentary, 2014.
[3] Daniel Poon Yu Wu, and David Zhang. Reddit Recommendation System,

2011.
[4] Jason Baumgartner. PushShift.io: Directory Contents.
[5] Jordan Segall and Alex Zamoshchin. PREDICTING REDDIT POST

POPULARITY, 2011.
[6] Lyndon White, Roberto Togneri, Wei Liu, Mohammed Bennamoun. How

Well Sentence Embeddings Capture Meaning, 2015.
[7] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:

Global vectors for word representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, 2014.

[8] Prasanna Chandramouli, Radhakrishnan Moni, and Varun Elango. Pre-
dicting reddit post popularity, 2017.

