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I. INTRODUCTION 
Recently, there has been an increase in       

interest in the public for the ecosystem surrounding        
humans. Often, it is believed that a deeper        
understanding of the ecological context one lives in        
makes them more likely to advocate for       
environmental activism, and because of this, it is        
important to cultivate this increased interest. In spite        
of this, it is sometimes difficult to learn more about          
the ecosystem around a location without expert       
help, especially when one does not have the specific         
vocabulary to describe the ecosystem. 

One way to ameliorate this is by providing        
the climate classification for a specific image.       
Although climate is not the only variable that        
characterizes an ecosystem, it is a simple piece of         
information that provides a jumping off point to        
learn more about the natural world in general.        
Furthermore, with the rise of global warming,       
climate is an important aspect of the system, as         
different climates may change drastically in the       
future. Finally, climate is a practical choice for        
public education, as systems such as the       
Köppen-Geiger climate classifications are well     
structured and defined.  

We want to create a tool to recognize        
climate category based on photos. With this, one        
could take a picture of the nature they may be          
around, and immediately know what ecosystem      
they are actively affecting. Instead of an abstract        
idea, the ecosystem will then be tangible.       
Furthermore, this could serve as a general       
educational tool, allowing people to be more       
familiar with images of ecosystems they may       
stumble across. 

The classifier takes in an image of a natural         
landscape as input and outputs the climate that is         
most likely shown in the picture. In this work, we          
use several different machine learning paradigms to       
attempt to achieve this aim, with best performance        
using a ResNet Convolutional Neural Network. 

 
II. RELATED WORK 

Most work done on climate classification      
thus far seems to be focused on using satellite         
imagery or multi-spectral data as opposed to       
landscape imagery of photos taken from Earth.       
Generally these projects employed SVMs or      
random forests (RFs) to perform the classification. 

A project in South Africa used imagery       
from the RapidEye satellite to classify tree species        
in semi-arid areas [1]. An analysis for classifying        
different agricultural landscapes employed both RFs      
and SVMs but found no statistically significant       
difference between them [2]. A project that was        
specifically focused on urban climates evaluated      
SVMs, RFs and a neural network to identify urban         
climates from satellite imagery and in particular,       
accuracy of 97.4% and 95.3% was achieved on the         
neural network and RF respectively [3].      
Additionally, another project studied different     
statistical methods for ecological classification and      
found that RFs performed better when compared to        
logistic regression and other common methods [4]. 

Because most projects already out there      
seem to focus on using satellite imagery or        
advanced data to perform climate classification, we       
decided that it would be best to use landscape         
imagery taken by people on Earth as this would         
make the use of our project more readily accessible         
to a common user. 

We did find that a similar project used        
street view or user taken images and attempted to         
identify from where the images were taken [5].        
Instead of using regression to predict latitude and        
longitude, the surface of the earth into cells in order          
to cast geolocation as a classification problem, and        
the probability that a given image was taken in each          
cell was predicted using convolutional neural      
networks. It was found that the model outperformed        
image retrieval methods more commonly used for       
geolocation, sometimes even achieving    
“superhuman” accuracy [5]. The high accuracy of       



 

this project made it seem feasible for us to take on           
the project we chose. Furthermore because of the        
success that a convolutional neural network model       
exhibited both in this study and the urban climate         
study we decided to use a CNN in our project as           
well. 

 
III. DATASET AND FEATURES 

To acquire training and testing data we       
started by identifying a dataset of publicly available        
Flickr images that were geotagged [6]. We then        
built a script to filter through the images in this          
dataset, based on user-provided tags. In particular,       
we were focused mainly on nature and landscape        
images for this project and we tried to eliminate         
photos of people or urban shots. Flickr provides        
users with the option to tag images with keywords.         
This allowed us to select images with keywords        
relevant to landscapes, and filter out undesirable       
images, such as portraits and street photography.       
Desired tags included “landscape,” “outdoors” and      
“nature,” while undesired tags included, “urban,”      
“me,” “portrait” and “nyc,” among others. We then        
downloaded the subset of images that satisfied the        
required filters. This gave us a total of about         
320,000 images, mostly of natural landscapes, to       
work with. Due to the tags being user-provided,        
however, some images did not depict landscapes,       
resulting in noisy labels. Nevertheless, mapping the       
geolocations of our dataset show that we have        
representative images of climates from most of the        
world. 

 
 
 
 
 

Figure 1. Examples of images from the dataset.  
 

For the class labels we initially used the        
Köppen climate classification system but found that       
many of the climates were severely overshadowed       
by other climates with many more representative       
images in our dataset. As such we grouped certain         
Köppen climates together and came up with our        
own broader classification system for the climates.       
The thirteen overarching classes and the Köppen       
climates they represent  are listed below in Table 1.  

Using all 320,000 images, however, ended      
up being too computationally demanding for our       

resources. Because of this, we decided to only use a          
sample of our initial dataset. Certain climates, such        
as oceanic, had many more images attributed to        
them, resulting in a relative class imbalance, so in         
downsampling, we chose to sample the same       
number of images from each climate, which       
balanced the classes. We felt this was reasonable, as         
although the results are not representative of our        
models performance on the original dataset, the       
model is not intended to be used on the original          
dataset, but rather user inputted images. 
 

Table 1. Climate Superclasses 

Superclass Köppen Symbols 

0. Arctic/alpine EF, ET 

1. Arid - cold BWk, BSk 

2. Arid - hot BWh, BSh 

3. Continental - hot Dsa, Dwa, Dfa 

4. Humid subtropical Cwa, Cfa 

5. Mediterranean Csa, Csb, Csc 

6. Ocean Ocean 

7. Oceanic Cwb, Cwc, Cfb, Cfc 

8. Subarctic (continental - 
cold) 

Dfc, Dfd, Dsc, Dsd, 
Dwc, Dwd 

9. Tropical monsoon Am 

10. Tropical rainforest Af 

11. Tropical savanna Aw, As 

12. Continental - warm Dsb, Dwb, Dfb 

 
The images were then labelled using their       

latitude and longitude metadata and Köppen-Geiger      
climate classification map data [7], by finding the        
nearest geolocation to the image metadata in the        
climate map. 

We then pre-processed the images to make       
them a uniform size and have a more manageable         
number of pixels. After resizing every image to 224         
by 224 pixels (with 3 color channels), the pixel         
values were then normalized to be standard normal.  

An analysis of our final dataset showed a        
reasonable spread of locations across the world, as        
well as across different climates. Because we       
manually balanced our classes, we also see even        
numbers of climates in our dataset. Finally, we        
randomly split our dataset and stratified to maintain        
class balances, setting 60% for training, 20% for        



 

validation, and 20% for testing. 
 

IV. METHODS 
In order to establish a baseline for       

performance of a model on our dataset, we trained a          
logistic regression model and a support vector       
machine model. After an initial attempt to train        
these models on normalized pixel values, we       
decided to manually create features from the images        
first. This could reduce the dimensionality of the        
features, and create more tractable information. To       
do this, we used Histograms of Oriented Gradients        
(HOG). HOG was used both for its computational        
efficiency and its use in image classification in the         
literature, although not tested on landscape imagery       
specifically [12]. HOG works by calculating several       
different orders of gradients over the image, and        
then calculating frequencies of these gradients in       
grids across the image. After tuning parameters, the        
best performing version of this algorithm resulting       
in a 1,568 dimensional feature vector, which was        
then normalized to have mean 0 and standard        
deviation of 1.  

With these features, we then train a logistic        
regression classifier. Logistic regression models the      
relationship between features and the response      
variable, which in this case is the climate, through         
the logistic function, which takes the form: 

 
X is the features corresponding to a given image,         
and θ is the parameter that our model learns during          
training. This outputs a vector with values for each         
climate, which we then get our prediction from by         
taking the softmax of this vector. To optimize this         
parameter, we perform l2 regularization by      
minimizing the following cost function: 

 
where C is the regularization term.  

We found, however, that when training the       
model on our derived features, we achieved 100%        
accuracy on the training data. Upon inspection, we        
realized that there were more dimensions in our        
feature vector than there were training examples,       
and thus the model matrix was not full rank. To          
account for this, we used only the first one hundred          

principal components of each feature, transforming      
each feature using principal component analysis      
(PCA). PCA finds orthogonal components that      
describe the most variation within the data, which        
each vector can then be projected onto. 

We then trained an SVM model to get        
another baseline accuracy. SVM works by      
maximizing the cost function: 

 
subject to the constraint that 

 
with  

 
where is given by some kernel function ,< x(i) x(j) >        
K. By doing this, the algorithm finds a hyperplane         
that optimally separates two classes of data, by        
maximizing the minimum distance between data      
points and the plane. However, because we have        
more than two classes of data, we use a one vs one            
paradigm, creating many different models to      
account for each pairing of classes.  

Finally, to tune the hyperparameters, we      
perform a grid search over regularization constants       
for linear regression and kernels for SVM, using 3         
fold cross validation on the training data.  

After having our two baselines we      
proceeded to try and build a more robust model         
using a convolutional neural network. In particular,       
we selected the ResNet-18 architecture. This      
residual neural network consists of an initial       
convolutional layer, 8 two-layer ResNet blocks and       
a final fully connected layer. Furthermore, we used        
a transfer learning approach. A ResNet was       
pre-trained on the ImageNet dataset, yielding high       
performance classification for general images.     
Theoretically, this allows the hidden layers of the        
model to already know useful features about images        
already.  

We then take this model and modify the        
output and input layer for our specific classification        
task. We also normalize each image to a predefined         
mean and variance, both slightly above 0, given by         
the initial dataset [13]. Finally, we retune the model         
from these starting weights on our own dataset        



 

through standard backpropagation, using a loss      
function of cross-entropy. We found convergence of       
loss after training for 30 epochs, using .001 for a          
learning rate, a mini-batch size of 64, and        
momentum of .9 to avoid local minima. These        
parameters were chosen through manual tuning to       
minimize validation loss, due to computational      
limitations to searching across a larger search space. 

Each residual block contains a shortcut      
connection, by way of adding the outputs before the         
block, x, to the outputs of the stacked layers, F(x),          
as shown in Figure 2. The addition of the identity is           
hypothesized to facilitate optimization by making it       
straightforward for a layer to become an identity        
mapping, by allowing F(x) to go to zero [8]. This          
effectively allows deep models to behave more like        
shallower models when doing so is more optimal.  

 
Figure 2. Two-layer residual block diagram [8].  

 
V. EXPERIMENTS/RESULTS/DISCUSSION 

To analyze our results, we primarily care       
about accuracy, given simply by the correct number        
of classifications over the total number of       
classifications. This is because false positives and       
false negatives are equivalent to us, and need not be          
weighed differently.  

Our baselines did not perform accurately      
but this is to be expected. Below is a graph of the            
first three components from a PCA of the histogram         
of gradients features: 

 
Figure 3. PCA histogram of gradients. 

As can be seen, these classes are not        
obviously separable in this dimension, although the       
first three components were only shown to explain        
20% of the variation in our features, and may still          
be separable in higher dimension. Clearly climate       
classification is something very nuanced and hard to        
distinguish with the given features. Indeed in the        
confusion matrix for logistic regression on the test        
set we see poor performance. 
 

 
Figure 4. Logistic regression confusion matrix for 

test set. 
 

Our overall accuracies for the logistic      
regression model were 0.27 on the training set and         
then 0.13 and 0.1 respectively on the validation and         
testing sets. Seeing as we have 13 superclasses we         
see that the logistic regression model performed       
only slightly better than chance.  

The SVM model also performed poorly,      
although better than logistic regression. While      
during training we achieved an accuracy of 0.77,        
during validation and testing we achieved an       
accuracy of only 0.12 and 0.15 respectively. The        
confusion matrix for the performance of SVM on        
the testing set is reported below. 

 

 

 
Figure 5. SVM confusion matrix for test set. 



 

 
The CNN performed better than we 

expected. As can be seen from the confusion matrix, 
even when predicting incorrectly, the predicted 
classes were often closely related to the true class. 
The three tropical climates were often conflated 
with each other, arctic and subarctic climates were 
linked, and the two arid climates were linked as 
well.  

 

 

 
Figure 6. CNN confusion matrix for test set.  

 
To better interpret errors made by our CNN 

model, we mapped class activations for selected 
images. This allows us to visualize the implicit 
“focus” of the CNN on different regions of an 
image [9].  

 

 

 
Figure 7. CAM for “Tropical_Rainforest” (top) and 

“Subarctic” (bottom). 
 

As seen in Figure 7, when classifying the above         
image as a rainforest, the CNN was indeed focusing         
on the trees on the island, whereas the focus for          
subarctic was on the sea while ignoring the island. It          
is likely that that particular shade of blue appears         

often in subarctic photos and that’s what led to the          
model finding that label as well. 

The table below summarizes the overall      
performance of each model 
 
 Train acc.  

(11517 
samples) 

Val. acc.  
(3839 

samples) 

Test acc. 
(3839 

samples) 

LR 0.27 0.13 0.10 

SVM 0.77 0.12 0.15 

CNN 0.82 0.32 0.31 

 
VI. CONCLUSIONS/FUTURE WORK 

There are numerous aspects of the project       
we feel we could’ve improved upon given more        
time. To start with, we would have liked to better          
curate the dataset. Because we relied upon an initial         
set of Flickr images with user-entered labels to        
classify them as landscape, nature, etc. we ended up         
with some noise in our dataset. While we did our          
best to filter out these noisy images, inevitably        
some went through and we ended up with images of          
interiors or shots that are not relevant for climate         
classification. Ideally the database we train on       
should include only nature shots. 

We also had to tag these images with a         
specific label from our 13 superclasses using their        
GPS coordinates. Ideally we could come up with a         
better proxy for climate when labelling our dataset        
which would again serve the purpose of leading to         
less noise or inaccuracies within the data itself. 

Furthermore, while currently our model     
only takes into account the raw pixel values of the          
image itself. We foresee that improvements could       
be made by also using the season during which the          
photo was taken as a feature. Landscapes can look         
very different depending on the time of year and         
this is something that we saw is causing        
misclassifications with our model in its current       
state. In general, snowed on landscapes are being        
classified as arctic or subarctic. 

 
VII. CODE 

Github:  
https://github.com/timmngo/cs229-koppen  
Google Drive: 
https://drive.google.com/file/d/1ODVCH2_dG5NM
V012Jd1j09lq8UF9viib/view?usp=sharing   

https://github.com/timmngo/cs229-koppen
https://drive.google.com/file/d/1ODVCH2_dG5NMV012Jd1j09lq8UF9viib/view?usp=sharing
https://drive.google.com/file/d/1ODVCH2_dG5NMV012Jd1j09lq8UF9viib/view?usp=sharing
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