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Introduction

e Motivation: Harassment and abuse are discouraging people from sharing
their opinions. We aim to detect toxic comments in online conversations.

e Problem Definition: Develop machine learning models that can identify
toxicity in online conversations.

e Approach: With Naive Bayes-SVM as our baseline model, we further
implemented Bi-LSTMS, Bert models, and used two ensembling methods to

improve quantitative results.

Data Sets

Civil Comments dataset:

The dataset comprises over 1804000 rows. Each row contains a general
toxic target score from 0 to 1, a comment text, scores under various toxicity
labels such as severe toxicity, obscene, identity attack, insult, threat, etc.
The dataset is split into 80% as training set, 10% as dev set and 10% as test set.
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Approaches

Baseline Model:
We combined Naive Bayes and Support Vector Machines to serve as our baseline model.
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LSTM Model:

Seq2Seq architecture. We embedded the input text on the word-level. Then we added some
drop-out layers to increase the robustness. 2-layer BiLSTMs with Max-pooling and Average-
Pooling. At the end, in addition to the target score of toxicity, the model also predicted an
auxiliary result.
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BERT Model:
We used the pre-trained BERT-Base model, which is cased and has 12 layer with 768-hidden,

12-heads, and 110M total parameters. It can be fine-tuned with one additional output layer
to create state-of-the-art models for sentence classification tasks.

Ensemble Method:
e Guided Random Search + Weighted Average Ensembling

e Follow the most confident prediction.
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Evaluation Method:
e Exact Match (the percentage of outputs that match exactly with the ground truth)

e F1 score (the harmonic mean of precision and recall)
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Baseline Model:
The accuracy values of our baseline, Naive Bayes SVM, are shown below:
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Description | Dev F1
Naive Bayes | 68.33%

LSTM Model:
e We trained the LSTM model for 4 epochs using the Adam optimizer

e The initial learning rate is 1e-3 with a scheduler adjusting the learning rate.
e We used binary cross entropy loss as the loss function.

Weighted Loss LSTM Model:

To solve the data imbalance problem, we applied weighted loss to train our
model: True-Positive 1*, False-Negative

Description Dev F1 | Dev EM %
Simple LSTM 771.95% | 95.37% e
LSTM with weighted loss pair(0.9, 0.1) | 81.12% | 95.21% s
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Contraction Mapping in LSTM Model:

Description Dev F1 | Dev EM
With contraction mapping 77.95% | 95.37%
Without contraction mapping | 76.04% | 95.38%

BERT Model:
To train BERT mode, compare simple BERT with weighted loss BERT.

Description Dev F1 | Dev EM
Simple BERT 77.37% | 95.73%
BERT with weighted loss pair(0.9,0.1) | 81.19% | 95.54%

Ensemble Method:

e Guided Random Search + Weighted Average Ensembling: (BERT with weight,
LSTM with weight).

e Follow the most confident prediction: (BERT, BERT with weight, LSTM with
weight).

Dev F1 | Dev EM
Best model without ensembleing 81.19% | 95.54%
Ensembling with guided weight 81.57% | 95.50%
Ensembling with most confident vote | 84.28% | 95.14%

Conclusions

e We tried three models on the toxicity classification problem.

e We used information from data visualization to preprocess data.
e Weighted Loss helped fix the problem of imbalanced data.

e Ensemble methods helped improve quantitative results.
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