

Toxic Comment Detection and Classification

Stanford University

Introduction

• **Motivation:** Harassment and abuse are discouraging people from sharing their opinions. We aim to detect toxic comments in online conversations.

• **Problem Definition:** Develop machine learning models that can identify toxicity in online conversations.

• **Approach:** With Naive Bayes-SVM as our baseline model, we further implemented Bi-LSTMS, Bert models, and used two ensembling methods to improve quantitative results.

Data Sets

Civil Comments dataset:

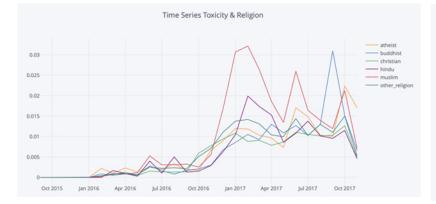
The dataset comprises over 1804000 rows. Each row contains a general toxic target score from 0 to 1, a comment text, scores under various toxicity labels such as severe toxicity, obscene, identity attack, insult, threat, etc. The dataset is split into 80% as training set, 10% as dev set and 10% as test set.

Word Cloud Data Visualization:

Top Words Frequency

Time Series Analysis:

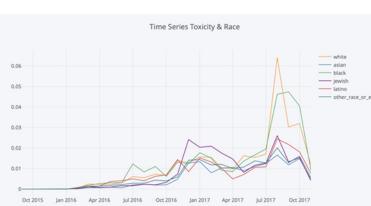
Toxicity: Disability



Toxicity: Religion

Female Related Words

Toxicity: Sexual Orientation



Toxicity: Race

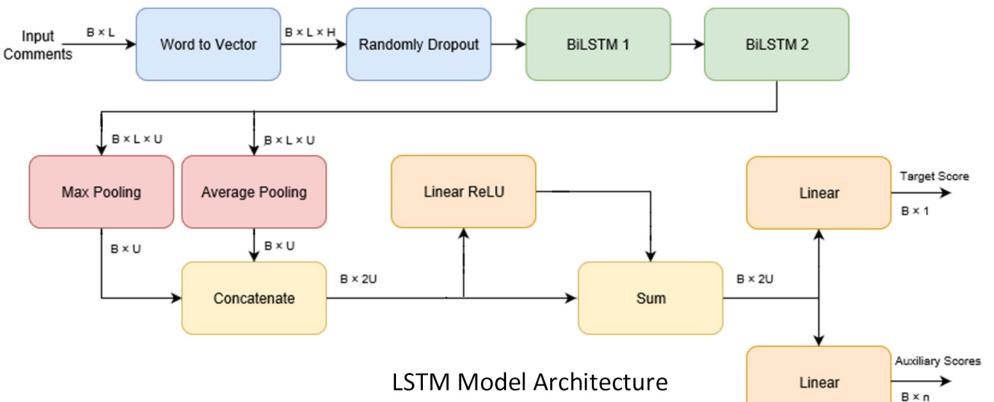
Baseline Model:

We combined Naive Bayes and Support Vector Machines to serve as our baseline model.

$$r_{j} = log(\frac{1 + \sum_{i:y^{i}=1} f_{j}^{i}}{1 + \sum_{i:y^{i}=-1} f_{j}^{i}})$$

LSTM Model:

Seq2Seq architecture. We embedded the input text on the word-level. Then we added some drop-out layers to increase the robustness. 2-layer BiLSTMs with Max-pooling and Average-Pooling. At the end, in addition to the target score of toxicity, the model also predicted an auxiliary result.

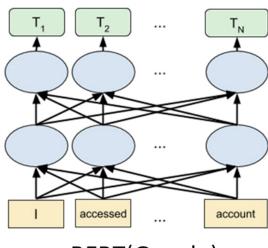


BERT Model:

We used the pre-trained BERT-Base model, which is cased and has 12 layer with 768-hidden, 12-heads, and 110M total parameters. It can be fine-tuned with one additional output layer to create state-of-the-art models for sentence classification tasks.

Ensemble Method:

- Follow the most confident prediction.



BERT(Google)

Evaluation Method:

- $2 \times \text{precision} \times \text{recall}$

 $F_1 =$ precision + recall

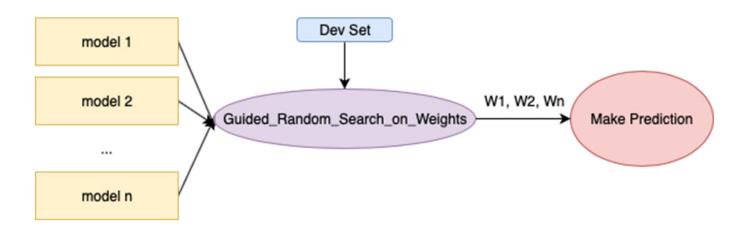
CS229 Final Project

Weiquan Mao Hao Li Hanyuan Liu

Approaches

$$y^{k} = sign(w^{T}x^{k} + b) \qquad x^{k} = r \circ f^{k} \qquad \min_{w,b} \ \frac{1}{2}w^{T}w$$

• Guided Random Search + Weighted Average Ensembling



• Exact Match (the percentage of outputs that match exactly with the ground truth) • F1 score (the harmonic mean of precision and recall)

true positives	recall =
$precision = \frac{1}{true \text{ positives} + false \text{ positives}}$	$\frac{1}{\text{true positives} + \text{false negatives}}$

Baseline Model:

The accuracy values of our baseline, Naive Bayes SVM, are shown below:

Description	Dev F1	Dev EM
Naive Bayes	68.33%	87.57%

LSTM Model:

- We trained the LSTM model for 4 epochs using the Adam optimizer
- We used binary cross entropy loss as the loss function.

Weighted Loss LSTM Model:

To solve the data imbalance problem, we applied weighted loss to train our model: True-Positive \uparrow , False-Negative \downarrow

Description	Dev F1	Dev EM
Simple LSTM	77.95%	95.37%
LSTM with weighted loss $pair(0.9, 0.1)$	81.12%	95.21%

Contraction Mapping in LSTM Model:

Description	Dev F1	Dev EM
With contraction mapping	77.95%	95.37%
Without contraction mapping	76.04%	95.38%

BERT Model:

To train BERT mode, compare simple BERT with weighted loss BERT.

Description	Dev F1	Dev EM
Simple BERT	77.37%	95.73%
BERT with weighted loss pair(0.9,0.1)	81.19%	95.54%

Ensemble Method:

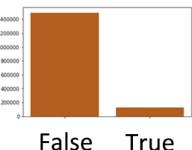
- LSTM with weight).
- weight).

Description Best model without ensem Ensembling with guided w Ensembling with most con

- We tried three models on the toxicity classification problem.
- We used information from data visualization to preprocess data.
- Weighted Loss helped fix the problem of imbalanced data.
- Ensemble methods helped improve quantitative results.

Results

• The initial learning rate is 1e-3 with a scheduler adjusting the learning rate.



• Guided Random Search + Weighted Average Ensembling: (BERT with weight,

• Follow the most confident prediction: (BERT, BERT with weight, LSTM with

	Dev F1	Dev EM
nbleing	81.19%	95.54%
veight	81.57%	95.50%
nfident vote	84.28%	95.14%

Conclusions