Toxic Comment Detection and Classification

Stanford University

Introduction

- Motivation: Harassment and abuse are discouraging people from sharing their opinions. We aim to detect toxic comments in online conversations.
- Problem Definition: Develop machine learning models that can identify toxicity in online conversations.
- Approach: With Naive Bayes-SVM as our baseline model, we further implemented Bi-LSTMS, Bert models, and used two ensembling methods to improve quantitative results.

Data Sets

Civil Comments dataset:

The dataset comprises over 1804000 rows. Each row contains a general toxic target score from 0 to 1, a comment text, scores under various toxicity labels such as severe toxicity, obscene, identity attack, insult, threat, etc. The dataset is split into 80% as training set, 10% as dev set and 10% as test set.

Word Cloud Data Visualization

Top Words Frequency

Female Related Words

Time Series Analysis:

Toxicity: Religion

Toxicity: Race

Approaches

Baseline Model

We combined Naive Bayes and Support Vector Machines to serve as our baseline model.

$$
r_{j}=\log \left(\frac{1+\sum_{i: y^{i}=1} f_{j}^{i}}{1+\sum_{i: y^{i}=-1} f_{j}^{i}}\right) \quad y^{k}=\operatorname{sign}\left(w^{T} x^{k}+b\right) \quad x^{k}=r \circ f^{k} \quad \min _{w, b} \frac{1}{2} w^{T} w
$$

LSTM Model:

Seq2Seq architecture. We embedded the input text on the word-level. Then we added some drop-out layers to increase the robustness. 2-layer BiLSTMs with Max-pooling and AveragePooling. At the end, in addition to the target score of toxicity, the model also predicted an auxiliary result.

We used the pre-trained BERT-Base model, which is cased and has 12 laver with 768 - hidden, 12 -heads, and 110M total parameters. It can be fine-tuned with one additional output layer to create state-of-the-art models for sentence classification tasks.

Ensemble Method:

- Guided Random Search + Weighted Average Ensembling

Follow the most confident prediction.

Evaluation Method:

Exact Match (the percentage of outputs that match exactly with the ground truth)

- F1 score (the harmonic mean of precision and recall)
$F_{1}=\frac{2 \times \text { precision } \times \text { recall }}{\text { precision }+ \text { recall }} \quad$ precision $=\frac{\text { true positives }}{\text { true positives }+ \text { false positives }} \quad$ recall $=\frac{\text { true positives }}{\text { true positives }+ \text { false negatives }}$

Results

Baseline Model:

The accuracy values of our baseline, Naive Bayes SVM, are shown below

Description	Dev F1	Dev EM
Naive Bayes	68.33%	87.57%

LSTM Model

We trained the LSTM model for 4 epochs using the Adam optimizer

- The initial learning rate is $1 \mathrm{e}-3$ with a scheduler adjusting the learning rate - We used binary cross entropy loss as the loss function.

Weighted Loss LSTM Model:

To solve the data imbalance problem, we applied weighted loss to train our model: True-Positive \uparrow, False-Negative \downarrow

Description	Dev F1	Dev EM
Simple LSTM		
LSTM with weighted loss pair(0.9, 0.1)	77.95%	95.37%
81.12%	95.21%	

Contraction Mapping in LSTM Model

Description	Dev F1	Dev EM
With contraction mapping	77.95%	95.37%
Without contraction mapping	76.04%	95.38%

BERT Model

To train BERT mode, compare simple BERT with weighted loss BERT.

Description	Dev F1	Dev EM
Simple BERT	77.37%	95.73%
BERT with weighted loss pair(0.9,0.1)	81.19%	95.54%

Ensemble Method:

- Guided Random Search + Weighted Average Ensembling: (BERT with weight, LSTM with weight)
- Follow the most confident prediction: (BERT, BERT with weight, LSTM with weight).

Description	Dev F1	Dev EM
Best model without ensembleing	81.19%	95.54%
Ensembling with guided weight	81.57%	95.50%
Ensembling with most confident vote	84.28%	95.14%

Conclusions

- We tried three models on the toxicity classification problem.
- We used information from data visualization to preprocess data.
- Weighted Loss helped fix the problem of imbalanced data.
- Ensemble methods helped improve quantitative results.

