# Objectives

## **Definition**

**On-sight**: completing a climbing route in one go with no prior information.

- Predict whether one can *on-sight* a route or not, given a set of features of the climber and the route.
- Test different classifiers and measure the performance according to  $F_1$  score.

# Predicting

## Why care about *on-sighting*?

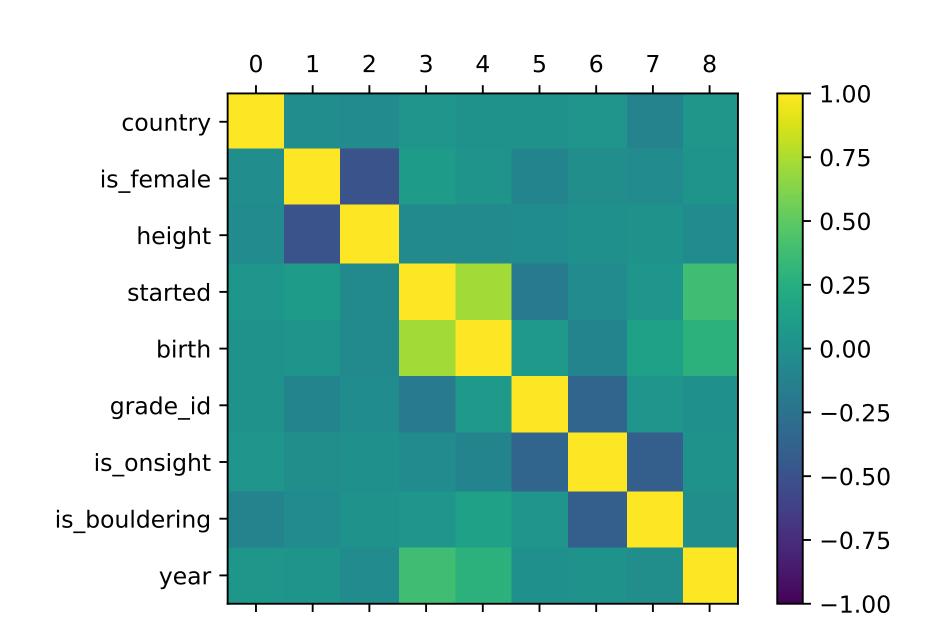
- proof of mastery;
- rewarded in competitive rock climbing;
- 3 absence of formal statistical studies on the subject.

#### Input/Output

- 1 Input: vector of 8 features taken from preprocessed raw data.
- Output: prediction of label is\_onsight  $\in \{0,1\}.$

#### Summary of results

- **1** Tested 5 different classifiers (see Methods).
- 2 Beat the baseline not by a lot (12% increase).



#### Figure 1: Correlation matrix of the features.

Can you on-sight it?

Victor Zhang (zhangvwk)

Department of Mechanical Engineering, Stanford University

### Data

| • <b>8a.nu</b> : the world's largest climbing logbook, used to track completed rock climbs all over the planet.                                                                                                     | <ul> <li>Dataset skewed towards the minority class of<br/>non-on-sighted climbs.</li> </ul>                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Raw data:</li> <li>users (≈ 63k rows, 22 columns)</li> <li>ascents (≈ 4.1 million rows, 28 columns)</li> <li>climbing methods (5rows, 4 columns)</li> <li>climbing grades (83 rows, 14 columns)</li> </ul> | <ul> <li>Accuracy is not appropriate a metric.</li> <li>Precision and recall:<br/>precision = <math>\frac{tp}{tp+fp}</math> </li> </ul> |
| Set type Set size $(10^6)$ is onsight                                                                                                                                                                               | $\text{recall} = \frac{tp}{tp + fn}$                                                                                                    |

| Set type | Set size $(10^{\circ})$ | is_onsight |
|----------|-------------------------|------------|
| Original | $\approx 1.76$          | 32.02%     |
| Imputed  | $\approx 2.17$          | 31.81%     |
| Balanced | $\approx 1.38$          | 50.00%     |
| Test     | $\thickapprox 0.433$    | 30.14%     |

Table 1: Training and test sets size and label statistics.

#### Features

country, is\_female, height, birth, grade\_id, is\_bouldering, started, year

## Methods

**1** Regularized logistic regression:

$$\sum_{i \in \mathcal{N}} y^{(i)} \left[ \log \sigma(x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(x^{(i)})) \right]$$
  
 
$$\lambda \left\| \theta \right\|_p^p , \qquad p \in \{1, 2\}$$

2 Regularized linear support vector classification:

$$\begin{array}{ll} \underset{\gamma,\theta}{\text{minimize}} & \frac{1}{2} \|\theta\|_2^2 + C \sum_{i=1}^m \xi_i \\ \text{s.t.} & y^{(i)} \left(\theta^\top x^{(i)}\right) \ge 1 - \xi_i, \quad i = 1, \dots, m \\ & \xi_i \ge 0, \quad i = 1, \dots, m \end{array}$$

3 Random forests [1] ( $\alpha_b = 1/B$ ) and AdaBoost [2]: $\mathbf{D}$ 

$$\hat{f}(x) = \sum_{b=1}^{B} \alpha_b f_b(x)$$

• Multi-layer perceptron: 4 layers (5, 5, 5, 5).

## Metrics

$$precision = \frac{tp}{tp + fp}$$
$$recall = \frac{tp}{tp + fn}$$

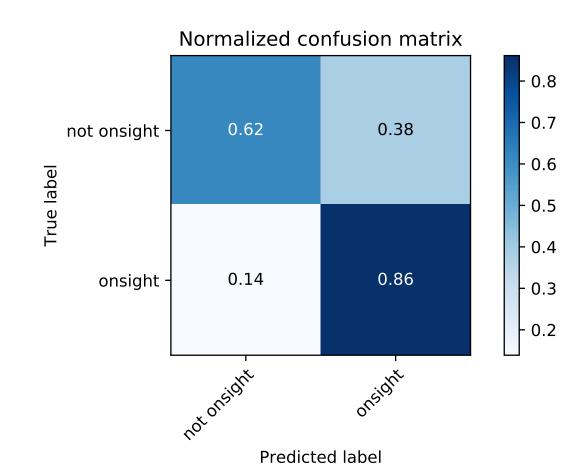
•  $F_1$  score:

$$F_1 = \left(\frac{\text{recall}^{-1} + \text{ precision}^{-1}}{2}\right)^{-1}$$

## Results

| Model               | Training ( | %) Test (%) |
|---------------------|------------|-------------|
| Logistic regression | 71.06      | 56.34       |
| SVM                 | 75.95      | 62.80       |
| Random forests      | 75.25      | 61.73       |
| Adaboost            | 76.23      | 62.82       |
| MLP                 | 77.15      | 63.11       |

Table 2: Comparison table of  $F_1$  scores after training on the balanced/imputed dataset.





- already.

- Samples.

### Discussion

• Close to the highest  $F_1$  score with the baseline

• Challenging to find suitable non-linearities that would greatly outperform a simple linear model. • Might need additional features to make the dataset more "learnable" (see Figure 3).

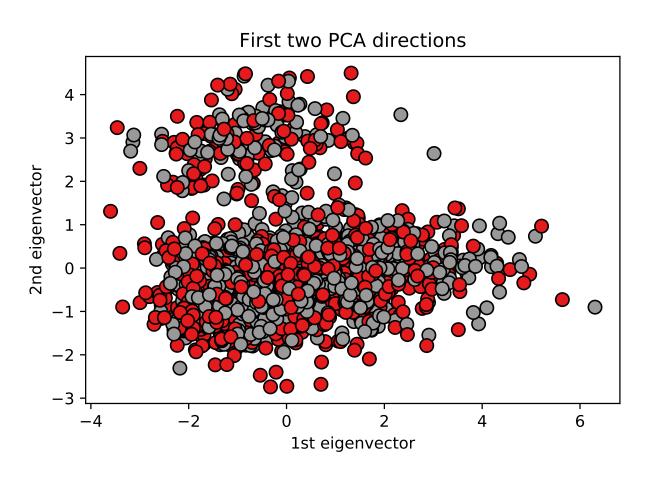


Figure 3: Subset of training set projected on the first two principal eigenvectors.

#### Future work

1 Try out other non-linear classifiers: kernel-induced random forests, boosting with more advanced base estimators... 2 Try out other reweighting schemes [3]. **3** Include additional useful features.

Note: the majority of this dataset comes from seasoned climbers. Thus, if we truly want to generalize this to general climbing population, we would need to find a dataset that better captures the statistics of said population.

#### References

[1] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. [2] Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. The MIT Press, 2012. [3] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-Balanced Loss Based on Effective Number of

arXiv e-prints, page arXiv:1901.05555, Jan 2019.