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Objectives

Definition

On-sight: completing a climbing route in one
go with no prior information.

•Predict whether one can on-sight a route or
not, given a set of features of the climber and
the route.

•Test different classifiers and measure the
performance according to F1 score.

Predicting

Why care about on-sighting?

1 proof of mastery;
2 rewarded in competitive rock climbing;
3 absence of formal statistical studies on the
subject.

Input/Output

1 Input: vector of 8 features taken from
preprocessed raw data.

2 Output: prediction of label is_onsight
∈ {0, 1}.

Summary of results

1 Tested 5 different classifiers (see Methods).
2 Beat the baseline not by a lot (12 % increase).
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Figure 1: Correlation matrix of the features.

Data

• 8a.nu: the world’s largest climbing logbook, used
to track completed rock climbs all over the planet.

•Raw data:
1 users (≈ 63k rows, 22 columns)
2 ascents (≈ 4.1 million rows, 28 columns)
3 climbing methods (5rows, 4 columns)
4 climbing grades (83 rows, 14 columns)

Set type Set size (106) is_onsight
Original ≈ 1.76 32.02%
Imputed ≈ 2.17 31.81%
Balanced ≈ 1.38 50.00%
Test ≈ 0.433 30.14%

Table 1: Training and test sets size and label statistics.

Metrics

•Dataset skewed towards the minority class of
non-on-sighted climbs.

•Accuracy is not appropriate a metric.
•Precision and recall:

precision = tp

tp + fp

recall = tp

tp + fn

•F1 score:

F1 =

(
recall −1 + precision −1

2

)−1

Features

country, is_female, height, birth, grade_id, is_bouldering, started, year

Methods

1 Regularized logistic regression:

−
∑

y(i)
[
log σ(x(i)) + (1− y(i)) log(1− σ(x(i)))

]
+ λ ‖θ‖pp , p ∈ {1, 2}

2 Regularized linear support vector classification:

minimize
γ,θ

1
2
‖θ‖2

2 + C
m∑
i=1

ξi

s.t. y(i)
(
θ>x(i)

)
≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

3 Random forests [1] (αb = 1/B) and AdaBoost
[2]:

f̂ (x) =
B∑
b=1

αbfb(x)

4 Multi-layer perceptron: 4 layers (5, 5, 5, 5).

Results

Model Training (%) Test (%)
Logistic regression 71.06 56.34
SVM 75.95 62.80
Random forests 75.25 61.73
Adaboost 76.23 62.82
MLP 77.15 63.11

Table 2: Comparison table of F1 scores after training on the
balanced/imputed dataset.
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Figure 2: Confusion matrix for the MLP on the test set.

Discussion

•Close to the highest F1 score with the baseline
already.

•Challenging to find suitable non-linearities that
would greatly outperform a simple linear model.

•Might need additional features to make the
dataset more “learnable" (see Figure 3).
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Figure 3: Subset of training set projected on the first two
principal eigenvectors.

Future work

1 Try out other non-linear classifiers:
kernel-induced random forests, boosting with
more advanced base estimators...

2 Try out other reweighting schemes [3].
3 Include additional useful features.

Note: the majority of this dataset comes from
seasoned climbers. Thus, if we truly want to
generalize this to general climbing population, we
would need to find a dataset that better captures
the statistics of said population.
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