Building a Book Recommender
Cécile Logé (ceciloge@stanford.edu) & Alexander Yoffe (ayoffe@stanford.edu) / CS 229 Fall 2019

MOTIVATION & DATASET

Goodreads is a social platform where users can discuss and rate books on a scale from 1 to 5. We want to build a Book Recommender and find an efficient way to predict book ratings.

Dataset:
- 8,000 books (8) snippet, genre, # of pages, year, authors, title, book cover
- 2m ratings from 15,000 users (I) (average of 140 ratings per user)
- 71% of the books in the dataset are behind 95% of the user ratings. We will define the Tail (T) as the other 29% (2298 books)

The dataset is split between train (65% + 15% for cross validation) and test (20%).

EVALUATION METRICS

Building a Book Recommender can be divided into three core goals each evaluated by a key metric:

1. Predict a user’s ratings on books they haven’t read yet (RMSE)
2. Surface a ranked list of top k books for each user (nDCC)
3. Help users discover relevant items (DivScore / all books but train set):

 \[
 \text{DivScore} = \sum_{u \in \text{test}} \sum_{i \in \text{all}} \frac{1}{M^2} \sum_{w \in \text{snippet}} \text{idf}_w \times \text{tf}_i
 \]

where \(w\) is the actual rating at our predicted rank \(i\), and \(n\) the actual rating at the actual rank \(i\).

NEURAL NETWORKS

Neural Networks were used to predict the average rating of a book based on the following input: Cover Image, Author, Title, Genre, Year published, # of pages

- **CNN:** Convolutional Neural Network for a model based on cover images
- **MLP:** Multi-Layer Perceptron used to handle 3 discrete (Categorical) variables and 2 continuous (Numerical) variables
- **Mixed Model:** concatenated NN outputs combining both the CNN and MLP

RESULTS

<table>
<thead>
<tr>
<th>Model</th>
<th>Set</th>
<th>RMSE</th>
<th>nDCC</th>
<th>nDCC Median</th>
<th>% nDCC + 1</th>
<th>Diverge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popularity</td>
<td>Test</td>
<td>0.999</td>
<td>0.864</td>
<td>0.864</td>
<td>1.0%</td>
<td>0</td>
</tr>
<tr>
<td>MLP</td>
<td>Test</td>
<td>1.243</td>
<td>0.916</td>
<td>0.819</td>
<td>1.0%</td>
<td>0.259</td>
</tr>
<tr>
<td>TF-IDF</td>
<td>Test</td>
<td>0.589</td>
<td>0.998</td>
<td>0.999</td>
<td>0.2%</td>
<td>0.349</td>
</tr>
<tr>
<td>Matrix Fact.</td>
<td>Test</td>
<td>0.654</td>
<td>0.900</td>
<td>0.909</td>
<td>1.1%</td>
<td>0.319</td>
</tr>
</tbody>
</table>

DISCUSSION & FUTURE WORK

Matrix Factorization turned out to be the best model to predict individual ratings (RMSE) and obtain the most ideal ranking (highest nDGC with satisfying distribution among users). Div10 = 0.189 implies a more balanced model than the Popularity Baseline, but below the Tail proportion of our dataset (0.29).

REFERENCES:

[4] pymage2search
Link to our Poster Video

Complete link: https://www.dropbox.com/s/egydg2dsir3o956/Poster%20CS229%20Book%20Reco.mov?dl=0