Wildfire Burn-Area Prediction

Abstract

- **Context:** Wildfires destroy billions of dollars worth of infrastructure. Difficult to predict
- **Purpose:** Design model to predict the size of a wildfire from basic starting conditions.

Data

- 1.88 million historic US fires (Kaggle)
 - Mostly tiny fires. No weather
- 600 fires from park in N. Portugal (UCI)
 - Weather features, but Geo-specific, few samples in dataset, more balanced

Model/Results:

- Predict final area burned with neural network, SVM, and others
- Best prediction accuracy from SVM: Mean-Absolute-Percent-Error = 78%

Baseline

- Linear regression

Other Models

- SVM
- K Nearest Neighbors
- Decision Tree
- Gaussian Process regressor

Neural Network

- Adam optimization, relu activation, 10 epochs, batch 64

Models

Baseline

- Normalized Prediction Plots

Other Models

- Ensembling
 - Stacked regressors
 - Random Forest
 - Adaboost

Neural Network

- 500 hectares

Results/Discussion

- Balancing dataset improves performance
- In general, models perform worse on Kaggle due to data imbalance and fewer highly correlated features
- SVM, neural net, and stacked regressors perform best

- Kaggle has weak correlations of features to fire size

Future Work

- Extend datasets to include additional salient features
- Merge additional weather features with Kaggle dataset to tackle high variance issue
- Predict fire size class instead

Acknowledgements

We would like to thank our TA, Leo Mehr, for his advice and support throughout the project as well as the teaching staff for helpful comments and ideas.