Predicting the Offensive Performance of MLB Position Players

Susana Benavidez, Stephanie Brito, Derek McCreight, Peter McEvoy {sbenavid, sbrito, dmccreig, pmcevoy}@stanford.edu; Mentor: Leo Mehr

Introduction

• Major League Baseball (MLB) position players are those who hit as opposed to pitch.
• The rise of data-driven baseball as popularized by the early 2000s Oakland A’s, has led to a sharp increase in the number of advanced metrics that can be used to evaluate offensive player performance.
• OPS+ is one of these new metrics that effectively captures the offensive value of MLB position players.
• Baseball player evaluation is uncertain at best; can machine learning improve the accuracy of performance predictions?

 • Namely, can a given position player’s previous n years of hitting statistics produce a reasonable prediction of that player’s OPS+ in year $n+1$?

Features

• Most statistics in the dataset are modern statistics (i.e. wins above replacement) designed to more accurately capture a player’s contribution in a given area than classical statistics (i.e. batting average).
• Many baseball statistics are highly correlated i.e. the number of plate appearances and the number of games played.
• Example statistics:
 - Wins Above Replacement
 - Wins Above Average
 - Total Bases
 - Runs Produced

Models

• Player-agnostic linear regression, including unregularized, lasso, and ridge variants.
• Player-specific linear regression, including unregularized, lasso, and ridge variants.
• Player-specific support vector regression, using GridSearch for hyperparameter tuning.
• Recurrent neural network with long short-term memory (LSTM).

 - We chose to stack multiple recurrent states with memory cells because it allows the model to determine more complex abstractions from the various offensive metrics.

Dataset

• We used a collection of annual per-player offensive statistics published by baseball-reference.com dating back to 1871.
• Intended for historical statistical analysis rather than machine learning, the dataset was simply a repository of various statistics.
• We chose OPS+ as our label—a normalized measure of the frequency with which a player reaches base plus the average number of bases the player records per plate-appearance.

Support Vector Regression

• Player-specific support vector regression:
 - Trained on 14 years of data
 - Tested on extrapolating the 15th year’s OPS_Plus

Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Mean Squared Error</th>
<th>Average Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR</td>
<td>0.088</td>
<td>0.232</td>
</tr>
<tr>
<td>LSTM (300 epochs)</td>
<td>0.0019</td>
<td>0.033</td>
</tr>
</tbody>
</table>

- The LSTM performs much better than the SVR in terms of MSE and AE.
- All of these metrics were acquired from data that was scaled using a minmax scaler.
- Although the SVR is trained on more years, the LSTM is more informed because it also incorporates other metrics (such as age)

Conclusion & Future Work

• For players with an OPS+ career trend of a certain shape, our models performed reasonably well.
• We were unable to handle the unpredictability of OPS+ values created by player injury and other off-the-field issues.
• We recently discovered a database of play-by-play outcomes for all MLB games at Retrosheet; the incorporation of more finely-grained features may impact model performance.