Efficient and robust learning for a diverse crowd.

Example: Personalized Spam Filtering
- Users share the same underlying ground truth...
- ...but receive emails written in different languages and styles, from different senders, etc.
- Some adversarial users might maliciously give incorrect examples and labels.

Motivation

Known Results
- **Efficient collaboration in the absence of adversaries:** [1] gives an algorithm with the optimal $O(\log n)$ overhead when all users are truthful.
- **Sample-efficient collaboration even when there are adversarial users:** [2] gives an algorithm with the optimal $O(m + \log n)$ overhead when there are m adversarial users, yet the algorithm is computationally costly.

Model

Robust Collaborative Learning [1, 2]:

Algorithm requests data from n users...

... and outputs a personalized classifier for every user.

User behavior:
- Upon each request, a truthful user i draws $x \sim D_i$, and returns the labeled example $(x, f^*(x))$.
- No guarantee for adversarial users.

Goal: f_i is accurate on D_i for each truthful user i.

Theoretical Results

UserSample Algorithm:
- Learn an ϵ-accurate f on the uniform mixture using $\tilde{O}(d/\epsilon)$ samples.
- Draw $\tilde{O}(1/\epsilon)$ samples.
- Test whether f is ϵ-accurate for her.
- Stay active for next iteration.
- Output f as the classifier.

Analysis:
- Each iteration assigns an accurate classifier to at least an $\Omega(1/m)$ fraction of the users with $\Omega(1)$ probability.
- After $O(m \log n)$ iterations, at most m users remain. Then, separately learn a classifier for each of them.

Theorem: UserSample has an overhead of $O(m \log n)$, which is near-optimal up to a log factor.

Empirical Results

(a) Binary functions
(b) Linear functions

X-axis: number of training examples. Y-axis: largest testing error among all truthful users. Both averaged over 10 trials.

Experiments

Setting:
- $n = 200$ users, among which $m = 2$ users are adversarial.
- Adversarial behavior: flip the correct label.
- Hypothesis class has VC-dimension $d = 500$.

Ground truth: (a) random binary function over $\{1, 2, ..., d\}$; (b) random linear classifier over \mathbb{R}^d.

Data distribution: (a) uniform over a random subset of size d_0; (b) Gaussian over a random d_0-dimensional subspace of \mathbb{R}^d. Different users have different d_0.

Methods:
- Naïve: learn a classifier for every user separately
- Mixture: directly learn the uniform mixture distribution
- UserSample: the proposed algorithm

References
