Introduction

My experience of buying wine based on high scores is pretty good. One limitation that comes with my approach is that this greatly limits my choice of wines to the scored ones. I wish to be able to avail of good wines from vineyards that have no access to these expensive wine critics. So I am curious on how to score wines. An automated way, could there be?

I propose the development of YAWDA, the AI-powered wine-scoring system. The goal of YAWDA is to predict the wine rating that closely matches the one given by the humans.

YAWDA – Yet Another Wine Data Analysis

Data

The data I used is from the UCI repository. There are two datasets related to the red and white variants of the Portuguese “Vinho Verde” wine. The data only includes physicochemical (inputs) and sensory (output) variables. Data on grape types, wine brand and wine selling price are not included.

All input data were normalized using a Standard Scaler.

https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Features

Input variables (based on physicochemical tests):
1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 – sulphates
11 – alcohol

Output variable (based on sensory data):
12 - quality (score between 0 and 10)

In the binary classifier model that uses the combined dataset, a label was added to indicate red (1) or white (0) variants.

Models

The models developed are Deep Learning-based model using a 6-layer neural network. The models were developed using Keras with Tensorflow.

Multi-Class Classifier – Allowed two guesses, 1st and 2nd top predictions, can YAWDA correctly predict the quality?
Hidden layer activation: ReLU
Output layer activation: Softmax
Regularization: Dropout
Optimizer: Adam
Initializer: He Normal
Loss function: categorical cross-entropy

$$L = \sum_{i=1}^{M} y_{i,c} \log(p_{i,c})$$

Binary Classifier – Can YAWDA predict the variant of wine, red or white?
Hidden layer activation: ReLU
Output layer activation: Sigmoid
Regularization: Dropout
Optimizer: Adam
Initializer: He Normal
Loss function: binary cross-entropy

$$L = (y \log(p) + (1-y) \log(1-p))$$

Discussion

The goal of this project is to predict the quality rating that closely matches the actual rating. The metric Top-k Categorical Accuracy is the perfect metric to measure this goal. The model did a good job in achieving decent accuracy scores and is as good as the best classifiers in Scikit-Learn (see table). Two key steps were noted, 1) normalizing the data turned out to be very important and 2) regularization using Dropout helped in preventing overfitting during training. Feature selection was done but the combination of all 11 features produced the best result.

Predicting Wine Quality

All 11 features were needed to get the highest top-2 categorical accuracy. Output: probabilities for each score, top 2 checked

Accuracy: Red 95%
Accuracy: White 89%

Predicting Wine Variant

Model only needed two features to predict the variant of wine.
Input variables: chlorides, total sulfur dioxide
Output: red or white
Accuracy: 98%

Future

I would like to test if these models can be applied to other classification datasets and I would like to study regression analysis with other wine datasets. ☺